首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourier transform infrared spectra of bacteriorhodopsin samples were obtained in conditions in which the aggregation state of the protein (i.e., monomeric or trimeric) was modified by different treatments. Two approaches were followed: (1) renaturation of bacteriorhodopsin starting from bacterioopsin dissolved in SDS and (2) reconstitution of bacterioopsin in Halobacterium lipid liposomes at two different lipid/protein ratios. Concomitant with the gradual recovery of the native interactions between transmembrane helices, we observed clear and gradual changes in the infrared absorption spectra in the amide I band and also in the band at 1741 cm-1. These processes were found to be compatible with the two-state oligomerization model. The whole set of experiments shows that the band at 1665 cm-1 in the deconvoluted spectra appears only when monomers interact forming trimers, even when the lattice is not present. This implies that the trimeric organization of bacteriorhodopsin is responsible for the unique features described in the amide I of purple membrane. The spectroscopic changes detected can be attributed to changes in secondary structure compatible with the interconversion of alpha I and alpha II helices. However, the exact nature and functional relevance of these changes is still unknown.  相似文献   

2.
On the basis of the crystal structure of the MEK substrate ERK, we have synthesized a 15 amino acid peptide representing the alpha C helix of human ERK1. We find this peptide to be an inhibitor of ERK phosphorylation by its upstream activator MEK. Circular dichroic spectroscopy indicates that the peptide has little secondary structure in aqueous buffer, but can readily adopt an alpha-helical structure in aprotic solvent. Steady-state kinetic analysis indicates that the peptide serves as a competitive inhibitor of ERK binding to MEK, with a dissociation constant, Ki, of 0.84 microM. Together with ATP-competitive inhibitors of MEK, we have used this peptide to define the kinetic mechanism of MEK catalysis. These studies reveal that MEK operates through a bi-bi random-ordered sequential mechanism. The synthetic peptide inhibits also the phosphorylation of p38 and ERK by the upstream activator MKK3, but is at least 3-fold less potent as an inhibitor of SEK activation of JNK1. Interestingly, the peptide also showed some ability to inhibit ERK-mediated phosphorylation of myelin basic protein, but was inactive as an inhibitor of the unrelated kinases Raf, Abl, and PKA. These results imply that the alpha C helix is an important locus of interaction for the formation of a MEK-ERK complex. The alpha C helix cannot, however, be the sole determinant of activator selectivity among the MAP kinases. Molecules designed to target the alpha C helix binding pocket of MAP kinase activators may provide a novel means of inhibiting these signal transducers.  相似文献   

3.
The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography. The bipartite structure of PurR consists of an amino-terminal DNA-binding domain and a larger carboxyl-terminal corepressor binding and dimerization domain that is similar to that of the bacterial periplasmic binding proteins. The DNA-binding domain contains a helix-turn-helix motif that makes base-specific contacts in the major groove of the DNA. Base contacts are also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. Critical to hinge helix-minor groove binding is the intercalation of the side chains of Leu54 and its symmetry-related mate, Leu54', into the central CpG-base pair step. These residues thereby act as "leucine levers" to pry open the minor groove and kink the purF operator by 45 degrees.  相似文献   

4.
Very little is known about the folding of proteins within biological membranes. A "two-stage" model has been proposed on thermodynamic grounds for the folding of alpha helical, integral membrane proteins, the first stage of which involves formation of transmembrane alpha helices that are proposed to behave as autonomous folding domains. Here, we investigate alpha helix formation in bacteriorhodopsin and present a time-resolved circular dichroism study of the slow in vitro folding of this protein. We show that, although some of the protein's alpha helices form early, a significant part of the protein's secondary structure appears to form late in the folding process. Over 30 amino acids, equivalent to at least one of bacteriorhodopsin's seven transmembrane segments, slowly fold from disordered structures to alpha helices with an apparent rate constant of about 0.012 s-1 at pH 6 or 0.0077 s-1 at pH 8. This is a rate-limiting step in protein folding, which is dependent on the pH and the composition of the lipid bilayer.  相似文献   

5.
In an in vitro study the effect of various thrombin inhibitors (argatroban, efegatran, DuP 714, recombinant hirudin and PEG-hirudin) on platelet activation in whole blood was investigated. Blood was drawn from normal human volunteers using the double syringe technique without use of a tourniquet to avoid autoaggregation of platelets. Blood was anticoagulated with either argatroban, efegatran, DuP 714, hirudin or PEG-hirudin at final concentrations of 10 micrograms/ml. Blood samples were then incubated at 37 degrees C either with saline, r-tissue factor, arachidonic acid, adenosine diphosphate or collagen. At definite times (1, 2.5, 5, 10 min) aliquots were taken and after various steps of fixative procedure the percentage of platelet activation was measured using fluorescent monoclonal antibodies to platelet surface receptors GPIIIa (CD-61) and P-selectin (CD-62). Flow cytometric analysis showed a platelet activation after all agonists used. All thrombin inhibitors studied caused a nearly complete inhibition of r-tissue factor-mediated platelet activation. In contrast, after activation with the other agonists an increased percent CD-62 expression was found with a maximum after 2.5 to 5 min. The results show that in whole blood thrombin inhibitors are effective in preventing platelet activation induced by r-tissue factor. The formation of active serine proteases including thrombin may be effectively inhibited by these agents. The observations further suggest that while thrombin inhibitors may control serine proteases, these agents do not inhibit the activation of platelets mediated by other agonists.  相似文献   

6.
We describe the application of immunoaffinity extraction and mass spectrometry to the analysis of Ty1 Gag protein in lysates of Saccharomyces cerevisiae. A magnetic bead-conjugated monoclonal antibody was used to achieve selective extraction, the specificity of which was established by matrix-assisted laser desorption/ionization mass spectrometric (MS) analysis of an extract of the lysate of cells overexpressing the Ty1 Gag protein. MS analysis of similar extracts of lysates following tryptic hydrolysis confirmed selective extraction of the epitope-containing peptide fragment. Sufficient sensitivity was achieved to allow the application of this approach to the analysis of lysates of wild-type cells. Furthermore, the sequence of the epitope-containing peptide was confirmed by electrospray-tandem MS. To our knowledge, this constitutes the first report of the application of immunoaffinity extraction and tandem MS analysis to the characterization of an antigen recovered from a complex cellular system.  相似文献   

7.
Deoxyguanosine-5'-monophosphate in water self-associates into stable structures, which include liquid-crystalline hexagonal and cholesteric phases. The structural unit is a four-stranded helix, composed of stacked Hoogsteen-bonded guanosine quartets. By using the osmotic stress method, we recently measured the force between helices in KCl solutions up to 2 M. In addition to the long-range electrostatic force, a short-range hydration repulsive contribution was recognized. The hydration repulsion is exponential, and shows a decay length independent from the ionic strength of the solution. Here, we report that more concentrated KCl solutions cause condensation of the guanosine helix in a hexagonal phase with constant equilibrium separation of approximately 7 A between helix surfaces. Long-range attraction, which induces the self-assembly, and short-range repulsion, which prevents the contact between the helices, are implied. By using osmotic stress, the force needed to push helices closer from the spontaneously assumed position has been measured. The attractive force was then estimated as a difference between the net force and the repulsive contribution, revealing an exponential decay length about two times larger than that of the short-range repulsion. The agreement with the helix interaction theory introduced recently by Kornyshev and Leikin (Kornyshev, A. A., and S. Leikin, 1997. Theory of interaction between helical molecules. J. Phys. Chem. 107:3656-3674) suggests that the repulsive and attractive forces originate from helix-specific interactions.  相似文献   

8.
Hydration structure of a collagen peptide   总被引:1,自引:0,他引:1  
BACKGROUND: The collagen triple helix is a unique protein motif defined by the supercoiling of three polypeptide chains in a polyproline II conformation. It is a major domain of all collagen proteins and is also reported to exist in proteins with host defense function and in several membrane proteins. The triple-helical domain has distinctive properties. Collagen requires a high proportion of the post-translationally modified imino acid 4-hydroxyproline and water to stabilize its conformation and assembly. The crystal structure of a collagen-like peptide determined to 1.85 Angstrum showed that these two features may be related. RESULTS: A detailed analysis of the hydration structure of the collagen-like peptide is presented. The water molecules around the carbonyl and hydroxyprolyl groups show distinctive geometries. There are repetitive patterns of water bridges that link oxygen atoms within a single peptide chain, between different chains and between different triple helices. Overall, the water molecules are organized in a semi-clathrate-like structure that surrounds and interconnects triple helices in the crystal lattice. Hydroxyprolyl groups play a crucial role in the assembly. CONCLUSIONS: The roles of hydroxyproline and hydration are strongly interrelated in the structure of the collagen triple helix. The specific, repetitive water bridges observed in this structure buttress the triple-helical conformation. The extensively ordered hydration structure offers a good model for the interpretation of the experimental results on collagen stability and assembly.  相似文献   

9.
10.
11.
12.
OBJECTIVE: The purpose of this study was to examine the activation of mitogen-activated protein kinases (MAPK) plus activator protein-1 (AP-1) and nuclear factor-kB (NF-kB) DNA binding activities, all of which seem to be important in a signal transduction cascade upstream of the increased level of mRNA expression observed after myocardial infarction. METHODS: Myocardial infarction was produced in Wistar rats. The activities of MAPKs in the ischemic region were measured using an in-gel kinase method or an in vitro kinase method. AP-1 and NF-kB binding was determined using an electrophoretic mobility shift assay. Levels of transforming growth factor beta-1(TGF-beta-1) and collagen I and III mRNAs were analyzed by Northern blot hybridization. RESULTS: p42 Extracellular signal-regulated kinase (ERK), p44ERK and p38MAPK activities increased 5.2-fold, 4.3-fold and 1.9-fold (P < 0.01), respectively, at 5 min after coronary artery ligation but returned to normal levels by 30 min. p55c-Jun NH2-terminal kinase (JNK) and p46JNK activities increased 4.0-fold and 3.2-fold (P < 0.01), respectively, at 15 min and returned to normal levels by 24 h after ligation. AP-1 DNA and NF-kB binding activities increased 8.7-fold and 7.1-fold (P < 0.01), respectively, at 3 days but returned to normal levels by 7 days after ligation. Interestingly, analyses of the levels of TGF-beta-1, collagen I and III mRNAs revealed increases of 6.3-fold, 15.2-fold and 12.0-fold (P < 0.01), respectively, at 1 week after myocardial infarction. CONCLUSIONS: Myocardial ischemia increased MAPK activities, which were followed by enhancement of AP-1 and NF-kB DNA binding activity in areas of myocardial infarction in rats. These signal transduction mechanisms may contribute to the myocardial ischemia and injury associated with myocardial infarction by causing an increased expression of TGF-beta-1 mRNA, collagen I and III in the area.  相似文献   

13.
In the course of the study of structure-functional properties and molecular mechanisms of neuropeptides and of low molecular weight proteins of the central nervous system we succeeded in isolating from the soluble fraction of bovine hypothalamus a protein having M(r) 11897.3, according to mass spectral analysis. The purification procedure was mainly based on reversed phase HPLC. As the N-terminus of the molecule was found to be blocked, we have subjected it to CNBr degradation. By Edman microsequence analysis of the peptide fragments and by data base searching the isolated substance was identified as parvalbumin alpha (PRVA)-one of the calcium-binding proteins. However, its primary structure was found not to be identical to that of the known PRVAs from other sources. One of the features of PRVA is its stability. Being subjected to an exhausting purification procedure it retains its complete structure. As neuropeptides and low molecular weight proteins are found to be polyfunctional, a central question concerns the biological role of PRVAs in terms of "where and when" they express their action.  相似文献   

14.
Proline 40 in Escherichia coli thioredoxin is located close to the redox active site (Cys32-Cys35) within the alpha2 helix. The conservation of this residue among most of the thioredoxins suggests that it could play an important role in the structure and/or function of this protein. We have substituted Pro40 for Ala by using site-directed mutagenesis and expressed the mutant P40A in E.coli. The effects of the mutation on the biophysical and biological properties of thioredoxin have been analyzed and compared with molecular dynamics simulations. Modeling predicted that the replacement of Pro40 by Ala induced a displacement of the active site which exposes Trp31 to the solvent and opens a cleft located between helices alpha2 and alpha3. The solvation free energy (SFE) calculation also indicated that P40A became more hydrophobic as W31 became more accessible. These predictions were totally in agreement with the experimental results. The mutant P40A exhibited chromatographic behavior and fluorescence properties very different from those of the wild-type (WT) protein, in relationship with the displacement of W31. The determination of the free energy of unfolding of P40A showed that the mutant was globally destabilized by 2.9 kcal/mol. However, the effect of the mutation on the transition curve was highly unusual as the midpoint of the unfolding transition increased, indicating that some local structures were actually stabilized by the mutation. Despite these structural modifications, neither the ability of the protein to reduce a chloroplastic enzyme nor its reactivity with the bacterial reductase decreased. The only functional difference was the higher stability of P40A in light activation of NADP-malate dehydrogenase under air, which suggests that the mutant was less rapidly re-oxidized than WT. Therefore, it can be concluded that Pro40 is not essential for maintaining the redox function of thioredoxin but rather is required for the stability of the protein.  相似文献   

15.
Vitamin A and its derivatives have been postulated to play an important role in renal tubulogenesis and compensatory hypertrophy. This study examined the effects of two carboxylic derivatives of vitamin A on Lewis lung carcinoma-porcine kidney-1 (LLC-PK1) renal tubular epithelial cell mito- and motogenesis and cell size. It was found that all-trans and 13-cis retinoic acids exerted modest, dose-dependent effects to stimulate incorporation of 3H-thymidine into acid-precipitable material of LLC-PK1 cells. The effects of all-trans retinoic acid to promote 3H-thymidine uptake in LLC-PK1 cells modestly enhanced that seen with acidic fibroblastic growth factor. Similar findings of these two retinoic acid derivatives to promote 3H-thymidine uptake and to enhance 3H-thymidine uptake stimulated by another growth factor (platelet-derived growth factor BB) were also observed in cultured bovine aortic smooth muscle cells. Both retinoic acids promoted healing of denuded areas made within confluent monolayers of serum-starved LLC-PK1 cells. All-trans retinoic acid also stimulated recovery of mechanically denuded areas within bovine aortic smooth muscle monolayers. Neither all-trans nor 13-cis retinoic acids s affected cell size as assessed by forward light scatter with flow cytometry, suggesting lack of effect to induce hypertrophy. These results demonstrate that two carboxylic acid derivatives of vitamin A are capable of stimulation of basal and growth factor-induced incorporation of 3H-thymidine uptake into acid-precipitable material and healing of denuded areas in disparate cell types. These findings are compatible with a role for vitamin A and its analogues in the tissue repair process.  相似文献   

16.
The dimer interface of a leucine zipper involves hydrophobic as well as electrostatic interactions between the component helices. Here we ask how hydrophobic effects and electrostatic repulsion balance the rate of folding and thermodynamic stability of a designed dimeric leucine zipper formed by the acidic peptide A that contains four repeating sequence units, (abcdefg)4. The aliphatic a and d residues of peptide A were the same as in the GCN4 leucine zipper but the e and g positions were occupied by Glu, which prevented folding above pH 6 because of electrostatic repulsion. Leucine zipper A2 was formed by protonation of the e and g side chains with a sharp transition midpoint at pH 5.2. Folding could be described by a two-state transition from two unfolded random coil monomers to a coiled coil dimer. There was a linear relationship between the logarithm of the rate constants and the number of repulsive charges on the folded leucine zipper dimer. The same linear relationship applied to the free energy of unfolding and the number of repulsive charges at thermodynamic equilibrium. Fully protonated peptide A folded at a near diffusion-limited rate (kon = 3 x 10(8) M-1 s-1), and the free energy of folding was -55 kJ mol-1 at 25 degrees C. The present work shows that protonation of Glu in positions e and g increases both the folding rate and the stability of the leucine zipper in the absence of any interhelical electrostatic interactions. Protonated Glu is proposed to act like a nonpolar residue and to strengthen the hydrophobic core by folding back toward the core residues in the a and d positions. This effect adds more to the free energy of unfolding and to the rate of folding than maximizing the number of salt bridges across the helix interface in an electrostatically stabilized heterodimeric leucine zipper [Wendt, H., Leder, L., H?rm?, H., Jelesarov, I., Baici, A., and Bosshard, H. R. (1997) Biochemistry 36, 204-213].  相似文献   

17.
The interaction of the nonintercalating bisquaternary ammonium heterocyclic drugs SN-18071 and SN-6999 with a DNA triple helix has been studied using thermal denaturation and CD spectroscopy. Our data show, that both minor groove binders can bind to the triple helix of poly(dA).2poly(dT) under comparable ionic conditions, but they influence the stability of the triplex relative to the duplex structure of poly(dA).poly(dT) in a different manner. SN-18071, a ligand devoid of forming hydrogen bonds, can promote triplex formation and thermally stabilizes it up to 500 mM Na+ concentration. SN-6999 destabilizes the triplex to duplex equibilirium whereas it stabilizes the duplex. The binding constant of SN-18071 is found to be greater than that to the duplex. The stabilizing effect of SN-18071 is explained by electrostatic interactions of three ligand molecules with the three grooves of the triple stranded structure. From the experiments it is concluded that SN-6999 binds to the triplex minor groove thereby destabilizing the triplex similar as previously reported for netropsin.  相似文献   

18.
Previous studies on the role of specific residues of the peptide or MHC molecule in Ag presentation have revealed the sensitivity of this complex system to even small changes in structure. In our study, we have analyzed the effect of amino acid substitution in a major CD4+ T cell determinant (T1) of HIV-1 gp160 on binding and recognition in the context of various E alpha E beta MHC class II molecules. Individual alanine substitutions at all but three positions had little or no negative effect on either MHC binding or recognition by a specific T hybridoma, whereas substitutions with larger side chains often diminished reactivity. A poly-alanine peptide containing only four of the original residues was an effective MHC class II binder and in vivo immunogen, although lacking the ability to stimulate the hybridoma. Replacement of a glutamic acid in T1 with alanine or a size-conservative, uncharged glutamine, but not a negatively charged aspartic acid produced a peptide at least 100-fold more potent than the parent peptide, indicating an inhibitory effect of the negative charge. Conversely, substitution of a glutamic acid for valine at position 29 in the floor of the peptide binding site of the E alpha E beta molecule decreased functional presentation of this peptide by more than 2 logs. However, these two effects of glutamic acid were not complementary and were mediated by distinct mechanisms, as the change in the peptide altered the extent of binding to class II, but the change in the MHC molecule decreased recognition without inhibiting peptide binding. Taken together, the data all suggest the conclusion that changes in side-chains of peptides and MHC molecules affect Ag presentation and T cell stimulation most often by introducing dominant negative or interfering groups that prevent or alter the pattern of binding events primarily mediated by a very limited number of other residues in the Ag or presenting molecule. These results have important implications for understanding the biochemistry of peptide-MHC-TCR interactions and for the possible design of vaccines both more potent and less subject to allele-specific limitations on immunogenicity.  相似文献   

19.
Functional and structural significance of the "module" in proteins has been investigated for globin proteins. Our previous studies have revealed that some modules in globins are responsible for regulating the subunit association and heme environmental structures, whereas the module substitution often induces fatal structural destabilization, resulting in failure of functional regulation. In this paper, to gain further insight into functional and structural significance of the modular structure in globins, we focused upon the "pseudo-module" in globin structure where boundaries are located at the center of modules. Although the pseudo-module has been supposed not to retain a compactness, the betaalpha(PM3)-subunit, in which one of the pseudo-modules, the F1-H6 region, of the alpha-subunit is implanted into the beta-subunit, conserved stable globin structure, and its association property was converted into that of the alpha-subunit, as the case for the module substituted globin, the betaalpha(M4)-subunit. These results suggest that modules are not unique structural and functional units for globins. Interestingly, however, the recent reconsideration of the module boundary indicates that the modules in globins can be further divided into two small modules, and one of the boundaries for the new small modules coincides with that of the pseudo-module we substituted in this study. Although it would be premature to conclude the significance of the modular structure in globins, it can be safely said that we have found new structural units in globin structure, probably new modules.  相似文献   

20.
BACKGROUND: The most conspicuous feature of a right-handed alpha helix is the presence of hydrogen bonds between the backbone carbonyl oxygen and NH groups along the chain. A simple off-lattice model that includes hydrogen bond interactions using virtual atoms is used to examine the stability, cooperativity and kinetics of the helix-coil transition. RESULTS: We have studied the thermodynamics (using multiple histogram method) and kinetics (by Brownian dynamics simulations) of 16-mer minimal off-lattice models of four-turn alpha-helix sequences. The carbonyl and NH groups are represented as virtual moieties located between two alpha-carbon atoms along the polypeptide chain. The characteristics of the native conformations of the model helices, such as the helical pitch and angular correlations, coincide with those found in real proteins. The transition from coil to helix is quite broad, which is typical of these finite-sized systems. The cooperativity, as measured by a dimensionless parameter, omegac, that takes into account the width and the slope of the transition curves, is enhanced when hydrogen bonds are taken into account. The value of omegac for our model is consistent with that inferred from experiment for an alanine-based helix-forming peptide. The folding time tauF ranges from 6 to 1000 ns in the temperature range 0.7-1.9 T(F), where T(F) is the helix-coil transition temperature. These values are in excellent agreement with the results from recent fast folding experiments. The temperature dependence of tauF exhibits a nearly Arrhenius behavior. Thermally induced unfolding occurs on a time scale that is less than 40-170 ps depending on the final temperature. Our calculations also predict that, although tauF can be altered by changes in the sequence, the dynamic range over which such changes take place is not as large as that predicted for beta-turn formation. CONCLUSIONS: Hydrogen bonds not only affect the stability of alpha-helix formation but also have profound influence on the kinetics. The excellent agreement between our calculations and experiments suggests that these models can be used to investigate the effects of sequence, temperature and viscosity on the helix-coil transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号