共查询到20条相似文献,搜索用时 0 毫秒
1.
Antimicrobial resistance of fecal bacteria in waters of the Seine river watershed (France) 总被引:2,自引:0,他引:2
We studied the prevalences of antimicrobial resistance (AR) and multiple antimicrobial resistance (MAR) among the fecal bacteria found in the rivers of a large watershed under strong anthropogenic pressures, the Seine river watershed (France). Two groups of fecal indicator bacteria, Escherichia coli and intestinal enterococci, were tested for their susceptibility to 16 and 10 antimicrobials respectively, using the disk diffusion method. We found that 42% of the 214 E. coli river isolates were AR (resistant to at least one antimicrobial) and 35% were MAR (resistant to at least two antimicrobials). Among the 148 intestinal enterococci isolates from rivers, 83% were AR and 49% were MAR. We also investigated the sources of AR fecal bacteria found in the rivers of the watershed. A total of 715 E. coli isolates and 476 intestinal enterococci isolates were collected in point sources (municipal and hospital wastewaters) and non-point sources (surface runoff and soil leaching waters from agricultural or forest areas). For E. coli, the prevalence of AR differed widely from source to source and ranked in this order: hospital wastewaters (71%) > municipal wastewaters (44%) > agricultural non-point sources (16%) > forest non-point sources (2%). The prevalence of MAR ranked similarly, and the same trend was observed for intestinal enterococci. The AR level of fecal bacteria in the sources was related to their expected exposure level to antimicrobials before their release into the environment. A MAR index was calculated for every source and a good discrimination between them was thus obtained. At the global scale of the Seine river watershed, domestic wastewaters seemed more likely to be the predominant source of the AR fecal bacteria found in the rivers. This was corroborated by the similarity of the MAR indices from river and municipal wastewater isolates for both fecal indicators. 相似文献
2.
Identifying the sources and fate of anthropogenically impacted dissolved organic matter (DOM) in urbanized rivers 总被引:3,自引:0,他引:3
Fangang Meng Guocheng Huang Xin Yang Zengquan Li Jian Li Jing Cao Zhigang Wang Li Sun 《Water research》2013
Anthropogenic activities have dramatically changed the loads and compositions of dissolved organic matter (DOM) in urbanized streams. In this study, the spatial and temporal variations of DOM in the anthropogenically impacted Zhujiang River were investigated by analyzing the water samples in an upstream, urbanized area and downstream of the rivers on different days of one year. The results indicated that the levels of dissolved organic carbon (DOC) and total phosphorus (TP) were unaffected by seasonal changes, but the specific UV254 absorbance (SUVA) values and the total nitrogen (TN) content were greater in the winter than those in the summer. Parallel factor (PARAFAC) analysis of the excitation emission matrices (EEM) revealed the presence of three anthropogenically derived components [tryptophan-like (C1) and tyrosine-like proteins (C3) and anthropogenic humic substances (C5)] in the urbanized rivers, and they had greater seasonal and spatial variability than the terrestrial and microbial humic substances (C2 and C4). Cluster analysis revealed that treated wastewater was an important source of DOM in the urbanized streams. Photodegradation experiments indicated that the DOM in the populous area of the rivers had greater photodegradation potentials than that in the downstream region or in the natural waters. Interestingly, that the anthropogenic humic substances (C5) were considerably more photoreactive than the other four PARAFAC components, which exhibited a decrease of 80% after exposure to sunlight for 0.5 d. This study suggests that the treated wastewater could be an important input to the DOM in the urbanized rivers and the naturally occurring photodegradation could help in eliminating the anthropogenic DOM during their transport. 相似文献
3.
Pollution from agriculture and urban effluents influences the ecology and biochemical functioning of the Seine River. Nitrification dominates nitrogen transformations downstream of the effluents of the Paris wastewater treatment plant (WWTP) at Achères, treating, by activated sludge the wastewater of 6.5 million inhabitant equivalents from Paris and its suburbs, without nitrification and denitrification treatment. It discharges effluents containing large amounts of nitrogen, ammonium mostly (30 mg L−1 N-NH4+ L−1), on average 45 mg L−1 of suspended particulate matter, high quantities of total organic carbon (30 mg C L−1) largely biodegradable (40%), and high concentration in total phosphorus (3 mg Tot P L−1), as well as microorganisms. Ammonium, brought into the river system, is slowly nitrified in the lower Seine River and especially in the freshwater estuary. The nitrifying activities can be observed by measuring inorganic nitrogen compound concentrations and potential activities. To understand the contributions of the WWTP effluents, the upstream agricultural runoff water and the Seine tributaries, it is useful to investigate the bacterial community. Whereas ammonia oxidation has been widely studied, the second step, i.e. nitrite oxidation, is less well understood. We have previously analysed the ammonium-oxidizing bacterial (AOB) community in the Seine (Cébron, A., Berthe, T., Garnier, J., 2003. Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl. Environ. Microbiol. 69, 7091–7100; Cébron, A., Coci, M., Garnier, J., Laanbroek, H.J., 2004. DGGE analysis of the ammonia oxidizing bacterial community structure in the lower Seine River: impact of the Paris wastewater effluents. Appl. Environ. Microbiol. 70, 6726–6737), and focus here on the composition of the nitrite-oxidizing bacterial (NOB) community. As no general molecular probe targeting all known NOBs is currently available, we chose to target and quantify (by competitive PCR) the two genera Nitrobacter and Nitrospira assumed to be the major players in nitrite oxidation in freshwater environments. Nitrobacter species were dominant in the upstream Seine River basin but Nitrospira was the dominant NOB downstream of the WWTP. These two genera were equally represented in WWTP effluents. In the Seine River estuary, especially in the salinity gradient, the Nitrobacter proportion increases and that of Nitrospira disappears, possibly due dilution by seawater. 相似文献
4.
Organic matter transport and degradation in the river Seine (France) after a combined sewer overflow 总被引:1,自引:0,他引:1
The impact of a combined sewer overflow (CSO) upon receiving waters has been studied in the river Seine during Summers 1995 and 1996. Three main events have been monitored with special attention paid to the computation of oxygen, carbon and suspended solids budgets. Bacterial biomass and bacterial production rates have been measured to provide a more accurate understanding of the carbon cycle of the river Seine. Oxygen consumption inside the polluted water masses was totally due to the activity of large bacteria discharged into the river by the CSO, the activity of native small bacteria did not significantly increase after CSOs. Suspended solids issued from the CSO very quickly settles in this deep, slowly flowing river. However, discharged dissolved organic carbon (DOC) cannot account for the observed oxygen depletions, the additional carbon source could be phytoplankton or deflocculated/degraded particulate organic matter. 相似文献
5.
Occurrence and fate of antibiotics in the Seine River in various hydrological conditions 总被引:15,自引:0,他引:15
Tamtam F Mercier F Le Bot B Eurin J Tuc Dinh Q Clément M Chevreuil M 《The Science of the total environment》2008,393(1):84-95
Occurrence and fate of 17 antibiotics were investigated in the aqueous phase of river water under different hydrological conditions at 5 sampling locations in the Seine River inner estuary. The target analytes belonged to 4 groups: quinolones, sulfonamides, nitro-imidazoles and diaminopyrimidines. This six-month survey (from January to June 2006) showed that different compounds were occurring at individual concentrations reaching 544 ng L(-)(1) (sulfamethoxazole). All 17 compounds were detected at least once in the survey. Sulfamethoxazole was detected in every sample, and showed the highest concentrations. Norfloxacin and flumequine were found to be the most ubiquitous quinolones, with detection frequencies of 33 and 75% respectively at the most contaminated site (Poses). Investigations concerning the origins of this contamination were made by means of a longitudinal profile along the Seine River between Paris and Poses. It showed large inputs of norfloxacin, ofloxacin, trimethoprim and sulfamethoxazole from wastewater treatment plants, with an increase in norfloxacin and sulfamethoxazole concentrations of 84% and 70% respectively, both reaching 155 ng L(-)(1) in the river, downstream from a wastewater outlet. The detected compounds showed different dissipation patterns and behaviours under different hydrological conditions. Higher inputs of norfloxacin were found in low flow conditions, which were rapidly attenuated along the stream. In contrast, sulfamethoxazole inputs were increasing in high flow conditions, and dissipation of this compound was found to be slow. Similar behaviour was observed for the synergist trimethoprim. Flumequine was also frequently detected and its input increased during flood events. 相似文献
6.
Carpentier S Moilleron R Beltran C Hervé D Thévenot D 《The Science of the total environment》2002,299(1-3):57-72
Dredging rivers is needed to ensure safe navigable waters, rivers and waterways. To anticipate the management of dredged materials in the case of the river Seine basin, the quality of the sediments in the river is checked every 3 years before dredging operations. The river Seine Basin is heavily submitted to pollution pressure from nearby industrial activities and urban expansion of Paris and its region. Here, the micropollutant content of the sediment sampled in 1996, 1999 and 2000 before dredging is discussed compared to regulatory standards. The results indicate that most of the sediment samples from the river Seine basin are lightly to moderately contaminated with organic and inorganic micropollutants (heavy metals, PAH, PCB), which makes the management after dredging easier. This pollution is strongly correlated with the organic matter content and to the fine fraction (<50 microm) of the sediment. These results can lead to other management options than the ones already used in the river Seine basin: (1) dumping of lightly to moderately polluted sediments in quarries; and (2) physical treatment (sieving, hydrocycloning) of contaminated sediments issued from 'hot spots'. 相似文献
7.
Kekli A Aldahan A Meili M Possnert G Buraglio N Stepanauskas R 《The Science of the total environment》2003,309(1-3):161-172
We analyzed the concentration of 129I in the water of 26 rivers covering most of the runoff from Sweden, with the aim of assessing current contamination levels, distribution patterns and potential sources in freshwater systems of northern Europe. The results show relatively high values (up to 1.4 x 10(9) atoms l(-1)), steeply decreasing levels with increasing latitude and a positive correlation with Cl concentration and other chemical parameters. The 129I concentrations observed in south Sweden are probably the highest ever recorded in rivers without any direct discharge from a nuclear installation. The strong latitudinal dependence suggests a northward dilution and possibly depletion of the isotope and a transport from a source located to the south. The most plausible source of the 129I in the studied rivers is atmospheric fallout of 129I emitted either by atmospheric discharges from the nuclear reprocessing facilities at Sellafield (England) and La Hague (France) or by volatilization from seawater contaminated by the same sources. The question is now whether and at what rate the 129I concentration in Nordic watersheds will increase further if discharges from nuclear reprocessing continue. 相似文献
8.
Meybeck M Lestel L Bonté P Moilleron R Colin JL Rousselot O Hervé D de Pontevès C Grosbois C Thévenot DR 《The Science of the total environment》2007,375(1-3):204-231
The Driver-Pressures-State-Impact-Response approach is applied to heavy metals in the Seine River catchment (65,000 km(2); 14 million people of which 10 million are aggregated within Paris megacity; 30% of French industrial and agricultural production). The contamination pattern at river mouth is established on the particulate material at different time scales: 1930-2000 for floodplain cores, 1980-2003 for suspended particulate matter (SPM) and bed-sediments, 1994-2003 for atmospheric fallout and annual flood deposits. The Seine has been among the most contaminated catchments with maximum contents recorded at 130 mg kg(-1) for Cd, 24 for Hg, 558 for Pb, 1620 for Zn, 347 for Cu, 275 for Cr and 150 for Ni. Today, the average levels for Cd (1.8 mg kg(-1)), Hg (1.08), Pb (108), Zn (370), Cu (99), Cr (123) and Ni (31) are much lower but still in the upper 90% of the global scale distribution (Cr and Ni excepted) and well above the natural background values determined on pre-historical deposits. All metal contents have decreased at least since 1955/65, well before metal emission regulations that started in the mid 1970's and the metal monitoring in the catchment that started in the early 1980's. In the last 20 y, major criteria changes for the management of contaminated particulates (treated urban sludge, agricultural soils, dredged sediments) have occurred. In the mid 1990's, there was a complete shift in the contamination assessment scales, from sediment management and water usage criteria to the good ecological state, now required by the 2000 European Directive. When comparing excess metal outputs, associated to river SPM, to the average metal demand within the catchment from 1950 to 2000, the leakage ratios decrease exponentially from 1950 to 2000 for Cd, Cr, Cu, Pb and Zn, meanwhile, a general increase of the demand is observed: the rate of recycling and/or treatment of metals within the anthroposphere has been improved ten-fold. Hg environmental trajectory is very specific: there is a marked decontamination from 1970 to 2000, but the leakage ratio remains very high (10 to 20%) during this period. Drivers and Pressures are poorly known prior to 1985; State evolution since 1935 has been reconstructed from flood plain cores analysis; Impacts were maximum between 1950 and 1970 but remained unknown due to analytical limitation and lack of awareness. Some Responses are lagging 10 y behind monitoring and have much evolved in the past 10 y. 相似文献
9.
Blanchard M Teil MJ Guigon E Larcher-Tiphagne K Ollivon D Garban B Chevreuil M 《The Science of the total environment》2007,375(1-3):232-243
Paris constitutes a major direct and indirect source of persistent toxic substances (PTS) to the river Seine, its tributaries and its basin, by atmospheric depositions and sewage sludge land-filling. The contaminant cycle and transfer pathways were investigated from 1999 to 2003 at local and inter regional scales in order to determine the respective importance of the main input and diffusion processes (wastewater, rainwater and runoff) from urban to rural areas. Paris constitutes an atmospheric emission hot spot for PAHs and PCBs. For example, for 2002, atmospheric concentrations ranged from 0.5 to 3 ng m(-3) for PAHs (Sigma 6 WHO) and from 0.06 to 0.69 ng m(-3) for PCBs (Sigma 7, EEC) and concentrations in bulk deposition ranged from 6.6 to 647 ng L(-1) for PAHs (Sigma 14) and from 0.6 to 8.1 ng L(-1) for PCBs. At Paris, annual atmospheric deposition inputs of PAHs (Sigma 6) and PCBs (Sigma 7) reached 104 g km(-2) and 35 g km(-2), respectively. PAHs followed a marked seasonal cycle in relation with winter domestic heating and bulk deposition concentrations were 5 to 15 times lower in remote areas. No seasonal cycle was observed for PCBs which varied little according to the area considered. PCB deposition fluxes were ruled by the rainfall amount, while for PAHs, the fluxes depended on local anthropogenic characteristics. At the scale of the Seine-Aval treatment plant comparison of annual inputs of PTS in wet period indicated that PCBs essentially come from atmospheric sources whereas PAHs are derived from both atmospheric and urban runoff sources. At the scale of the sub-basin, atmospheric inputs to the soil (Sigma 3 PAHs: 14-25 g km(-2), Sigma 7 PCBs: 5.6-25 g km(-2)) represent the prevailing source for PAHs and PCBs, as compared to that from the disposal of urban sludge on agricultural plots (Sigma 3 PAHs: 3-8 g km(-2), Sigma 7 PCBs: 0.5-2 g km(-2)). 相似文献
10.
Short-term variability of dissolved trace element concentrations in the Marne and Seine rivers near Paris 总被引:1,自引:0,他引:1
Elbaz-Poulichet F Seidel JL Casiot C Tusseau-Vuillemin MH 《The Science of the total environment》2006,367(1):278-287
The concentrations of dissolved trace elements (Li, B, Mn, Cu, As, Rb, Sr, Mo, Cd, Ba, Pb) in the Marne and Seine rivers in the Paris urban area were monitored over a 2-year period. The resulting data indicated moderate contamination of waters by the most toxic elements (Cu, As, Cd and Pb). The River Marne upstream and the River Seine downstream of the city of Paris displayed similar concentrations. However higher fluxes of trace elements were observed in the Seine than in the Marne due to their different discharges. Li, B, Rb, Sr and Ba concentrations were correlated with river discharge and concentrations were higher during high river flow. This was interpreted as a dilution by discharge from a major natural or anthropogenic source. Mn, Cu, Mo, Cd and Pb concentrations were not correlated with discharge. Dissolved Mn, Cu and Cd increased rapidly in summer, whereas the concentration of Mo decreased. These variations were attributed to redox processes. During summer when the dissolved oxygen concentrations decrease, Mn, Cu, Cd and Pb are released into solution whereas Mo is immobilised. Like metals, variations in arsenic contents were not linked with discharge. Its similarity with phosphate distribution suggests similar controls involving phytoplankton uptake and release from sediments through organic matter mineralization. 相似文献
11.
Carpentier S Moilleron R Beltran C Hervé D Thévenot D 《The Science of the total environment》2002,295(1-3):101-113
In rivers, sediments are frequently accumulating persistent chemicals, especially for those that are more contaminated as a consequence of pressure related to environmental pollution and human activity. The Seine river basin (France) is heavily polluted from nearby industrial activities, and the urban expansion of Paris and its suburbs within the Ile de France region and the sediments present in the Seine river basin are contaminated. To ensure safe, navigable waters, rivers and waterways must be dredged. In this paper, the quality of the sediment dredged in 1996, 1999 and 2000 is discussed. Physico-chemical characteristics of the sediment itself and of the pore-water are presented. Seine basin sediments show very diverse compositions depending on the sampling site. Nevertheless, a geographic distribution study illustrated that the Paris impact is far from being the only explanation to this diversity, the quality of this sediment is also of great concern. The sediment once dredged is transported via barges to a wet disposal site, where the dredged material is mixed with Seine water in order to be pumped into the receiving site. This sort of dumping might be responsible for the potential release of contaminants to the overlying water from the significantly contaminated sediments. 相似文献
12.
Critical budget of metal sources and pathways in the Seine River basin (1994-2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn 总被引:1,自引:0,他引:1
Thévenot DR Moilleron R Lestel L Gromaire MC Rocher V Cambier P Bonté P Colin JL de Pontevès C Meybeck M 《The Science of the total environment》2007,375(1-3):180-203
River basin metal pollution originates from heavy industries (plating, automobile) and from urban sources (Paris conurbation: 2740 km(2), 9.47 million inhabitants). The natural sources of metal have been found to be limited due to sedimentary nature of this catchment and to the very low river sediment transport (10 t km(-2) y(-1)). Several types of data have been collected to build the metal budget within the whole Seine River basin: field surveys, economical statistics and environmental models. Environmental contamination and related fluxes have been measured on atmospheric fallout, rural streams particles, and Seine River particles upstream and downstream of Paris and at river mouth. Metal pathways and budgets have been set up for (i) a typical cultivated area, (ii) a Paris combined sewer system, (iii) Paris conurbation and (iv) the whole catchment metal retention effect in floodplain and dredged material. Metal fluxes to the estuary have been decomposed into natural, urban domestic and other sources. The latter are within 1-2 orders of magnitude larger than waste water fluxes directly released into rivers according to an industrial census. These fluxes have been further compared to the annual use (1994-2003) of these metals. Metal excess fluxes exported by the river are now a marginal leak of metal inputs to the catchment (i.e. "raw" metals, metals in goods, atmospheric fallout), generally from 0.2 to 5 per thousand. However, due to the very limited dilution power in this basin, the contamination of particles is still relatively high. The Seine River basin is gradually storing metals, mostly in manufactured products used in construction, but also in various waste dumps, industrial soils, agricultural and flood plain soils. 相似文献
13.
Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain 总被引:2,自引:0,他引:2
Ledoux E Gomez E Monget JM Viavattene C Viennot P Ducharne A Benoit M Mignolet C Schott C Mary B 《The Science of the total environment》2007,375(1-3):33-47
A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management unit in the Seine river basin. 相似文献
14.
Ahad JM Ganeshram RS Spencer RG Uher G Upstill-Goddard RC Cowie GL 《The Science of the total environment》2006,372(1):317-333
Nitrogen isotope ratios (delta(15)N) were used to help elucidate the sources and fate of ammonium (NH(4)(+)) and nitrate (NO(3)(-)) in two northeastern English estuaries. The dominant feature of NH(4)(+) in the heavily urbanised Tyne estuary was a plume arising from a single point source; a large sewage works. Although NH(4)(+) concentrations (ranging from 30-150 microM) near the sewage outfall varied considerably between surveys, the sewage-derived delta(15)N-NH(4)(+) signature was remarkably constant (+10.6+/-0.5 per thousand) and could be tracked across the estuary. As indirectly supported by (15)N-depleted delta(15)N-NO(3)(-) values observed close to the mouth of the Tyne, this sewage-derived NH(4)(+) was thought to initiate lower estuarine and coastal zone nitrification. In the more rural Tweed, NH(4)(+) concentrations were low (<7 microM) compared to those in the Tyne and delta(15)N-NH(4)(+) values were consistent with mixing between riverine and marine sources. The dominant form of dissolved inorganic nitrogen (DIN) in the Tweed was agricultural soil-derived NO(3)(-). A decrease in riverine NO(3)(-) flux during the summer coinciding with an increase in delta(15)N-NO(3)(-) values was mainly attributed to enhanced watershed nutrient processing. In the Tyne, where agricultural inputs are less important compared to the Tweed, light delta(15)N-NO(3)(-) (ca. 0 per thousand) detected in the estuary during one winter survey pointed to a larger contribution from precipitation-derived NO(3)(-) during high river discharge. Regardless of the dominant sources, in both estuaries most of the variability in DIN concentrations and delta(15)N values was explained by simple end-member mixing models, implying very little estuarine processing. 相似文献
15.
Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers 总被引:4,自引:0,他引:4
Murata A Takada H Mutoh K Hosoda H Harada A Nakada N 《The Science of the total environment》2011,409(24):5305-5312
We report the results of a nationwide survey of commonly used human and veterinary antibiotics (7 sulfonamides, trimethoprim, and 4 macrolides) in 37 Japanese rivers. Concentrations of the sum of the 12 target antibiotics ranged from undetectable to 626 ng/L, with a median of 7.3 ng/L for the 37 rivers. Antibiotics concentrations were higher in urban rivers than in rural rivers and were correlated with those of molecular markers of sewage (crotamiton and carbamazepine). Macrolides were dominant over sulfonamides in urban rivers. Sulfonamides, especially sulfamethazine (used in animals), were dominant in a few rivers in whose catchment animal husbandry is active. However, these signals of veterinary antibiotics were overwhelmed by those of human antibiotics in lower reaches of most rivers. The analysis of the antibiotics in all 88 samples showed that the target antibiotics in Japanese rivers are derived mainly from urban sewage, even though larger amounts of antibiotics are used in livestock. Most of the livestock waste-derived antibiotics are unlikely to be readily discharged to surface waters. 相似文献
16.
Dommergue A Ferrari CP Planchon FA Boutron CF 《The Science of the total environment》2002,297(1-3):203-213
Total gaseous mercury (TGM) has been monitored at Champ sur Drac, a suburban site of Grenoble in southern east France. TGM measurements have been made over 4 periods of approximately 10 days throughout 1999-2000 using cold vapour atomic fluorescence absorption technique. The first monitoring campaign was initiated on November 4, 1999, followed by three other campaigns respectively on January 12, 2000, April 10, 2000 and July 17, 2000. Concurrent monitoring of O3, NO, NO2, SO2 and of meteorological parameters have also been performed. The mean TGM concentration was 3.4 ng m(-3) with maximum hourly mean concentration of 37.1 ng m(-3). Although mean TGM concentration was not greatly different from those previously measured in the troposphere, the greater TGM variability as well as the occurrence of high TGM concentration linked to particular wind conditions suggested the strong influence of anthropogenic sources. The chlor-alkali plant located nearby, the others chemical industries using fuel combustion and the municipal waste incinerator were thought to contribute to mercury pollution events. 相似文献
17.
Tamara Garcia-Armisen Adriana Anzil Pierre Cornelis Marc Chevreuil Pierre Servais 《Water research》2013
In the present study, the antimicrobial resistant (AR) bacteria were quantified and identified in different river samples using in parallel a culture-based approach and a culture-independent one. The objective was to evaluate the importance of the cultivation bias when studying antimicrobial resistance among environmental bacteria. Three different river samples covering a gradient of anthropic influence were tested and three different antimicrobial compounds were used as selective agents: amoxicillin, tetracycline and sulfamethoxazole. From a quantitative point of view, our results highlight the importance of the culture media used, as for the same sample and the same selective agent significant differences were observed in the counts of culturable AR bacteria depending on the culture media used. The identification of AR bacteria through culture or culture-independent methods put on evidence AR bacterial communities that differ dramatically: γ-proteobacteria and more specifically Aeromonadaceae dominated among the isolates while β-proteobacteria (Comamonadaceae), dominated among the sequences obtained without culture. Altogether these results highlight the necessity to develop a methodological consensus preferably without culture, to approach this important topic in the coming years. 相似文献
18.
Albinet A Leoz-Garziandia E Budzinski H Viilenave E 《The Science of the total environment》2007,384(1-3):280-292
Ambient measurements (gas+particle phases) of 15 polycyclic aromatic hydrocarbons (PAHs), 17 nitrated PAHs (NPAHs) and 9 oxygenated PAHs (OPAHs) were carried out during July 2004 on three different sites (urban, sub-urban and rural) in the region of Marseilles (South of France). Atmospheric concentrations of these classes of polyaromatics are great of interest because of their high potential mutagenicity and carcinogenicity. OPAH concentrations were of the same order of magnitude as those of PAHs while NPAH concentrations were one to two orders lower. 9-Fluorenone and 9,10-anthraquinone were the most abundant OPAHs, accounting for about 60% and 20% of the total OPAH concentration. Respectively 1-and 2-nitronaphthalene were the most abundant NPAHs and were accounting for about 30-50% and 15-30% of the total NPAH concentration. NPAHs and OPAHs concentration levels were consistent with the characteristics of the sampling sites. Study of source specific ratios (2-nitrofluoranthene/1-nitropyrene) clearly showed those primary NPAH sources influence the urban and sub-urban sites whereas production of secondary NPAHs by gas phase reactions was prevalent at the rural site. The study of NPAH and OPAH sources suggested that gasoline engines were an important source of such compounds Whereas the dominant source of 1-nitropyrene, 2-nitrofluorene, 6-nitrochrysene and benz[a]anthracene-7,12-dione seems to be diesel vehicles. Finally, 9,10-anthraquinone presents a double origin: primary diesel emission and photochemical processes. Formation of 9,10-anthraquinone from anthracene ozonation was shown at the rural site. Further investigations will be necessary in order to discriminate when (before or during the sampling) the OPAHs are formed. 相似文献
19.
Robin Frederick Warner 《Water and Environment Journal》2014,28(3):365-381
Environmental flows are waters released from storages to improve degraded ecosystems. Subsequent monitoring is then used to determine incremental benefits. These flows in the Hawkesbury Nepean and the Durance are very low compared with those advocated for other systems. In the former, water is used in Sydney and Wollongong, while the Durance water is diverted to supply 16 hydropower stations. In this system, reserved flows have been set at 2.5% of mean discharge, while in the Australian river, environmental flows have varied, but are usually 3.6% or less in the current regime. Additionally, increasing the transparencies of barrages and weirs will enhance the effectiveness of current environmental flows. Implementation of such flows imposes many problems because of structural difficulties for releasing water and compromising regulatory infrastructures. Additionally, with the onset of global warming, both systems will suffer significant water losses. 相似文献