首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用实验法研究了AZ80镁合金高温高应变速率压缩时的流变应力.结果表明,镁合金在200~400℃、应变速率为0.001~10s-1进行高温压缩的情况下,流变应力随应变速率的升高和变形温度的降低而升高,其稳态流变应力同Zencr-Hollomon参数的对数之间呈线性关系.引入Zener-Hollomon参数的指数形式来描述AZ80镁合金热压缩变形时流变应力与变形温度和应变速率之间的关系.  相似文献   

2.
在变形温度为200~400℃、应变速率为0.001~1s-1条件下,对ZK60镁合金进行热压缩实验,建立一个单隐层前馈误差反向传播人工神经网络模型,研究该镁合金的流变行为。模型的输入参数分别为变形温度、应变速率和应变,输出为流变应力,中间隐含层包含23个神经元,并采用Levenberg-Marquardt算法对此网络模型进行训练。结果表明:ZK60镁合金的流变应力随变形温度升高和应变速率降低而减小;其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在较高温度和较低应变速率时,过渡阶段不很明显;所建神经网络模型可以很好地描述ZK60镁合金的流变应力,其预测值与实验值吻合很好;利用该模型预测的变形温度和应变速率对流变应力的影响结果与一般热加工理论所得结果一致。  相似文献   

3.
AZ91镁合金高温变形本构关系   总被引:7,自引:0,他引:7  
王智祥  刘雪峰  谢建新 《金属学报》2008,44(11):1378-1383
采用Gleeble-1500热模拟机对AZ91镁合金进行了高温压缩变形实验,分析了该合金在变形温度为250-400℃,应变速率为0.001-1 s-1条件下流变应力的变化规律.结果表明,变形温度和应变速率均对流变应力有显著的影响,流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≥400℃、应变速率≤0.001 s-1时,流变应力随变形量的增加达峰值后呈稳态流变特征.并采用双曲正弦模型确定了该合金的变形激活能Q和应力指数n随应变量的变化规律,建立了相应的热变形本构关系.经实验验证,所建立的本构关系能较好地反映AZ91镁合金实际热变形行为特征.  相似文献   

4.
在AZ31B镁合金中添加0.8%的稀土元素Nd,应用Gleeble-1500D热/力学模拟试验机,在不同变形温度、不同应变速率下对AZ31B-0.8Nd镁合金的流变应力进行了研究。结果表明,镁合金在等温压缩变形过程中,变形温度和应变速率对流变应力和组织有显著的影响,流变应力随着变形温度的升高和应变速率的降低而降低,变形温度在350~400℃,应变速率为0.1s^-1条件下合金的组织细小均匀。  相似文献   

5.
针对不同加工方法制备的AZ31B镁合金薄板,利用热拉伸试验机和金相显微镜对其在不同温度和变形速率下的流变应力进行了实验研究。结果表明,变形温度和变形速率对热拉伸时镁合金的流变应力有显著影响,峰值流变应力随应变速率的降低和变形温度的升高而降低。峰值流变应力随板材的厚度增加而发生变化,低温时厚度效应较为明显。退火处理对冷轧板的峰值流变应力影响较小,冷轧板可直接用于热加工成形。峰值流变应力变化规律:挤压板>热轧板>冷轧板。  相似文献   

6.
采用Gleeble-1500D热模拟机对AZ31B-0.8Nd稀土镁合金在应变速率为0.01~1s-1,温度为300~450℃,最大变形量约为70%的条件下,进行了恒应变速率高温压缩模拟实验,研究了实验合金在高温变形时的流变应力与应变速率及变形温度之间的关系和组织变化。结果表明:合金的流变应力随应变速率的增大而增加,随应变温度的升高而减小;在应变速率和变形温度相同时,挤压态试样的流变应力明显低于铸态试样的流变应力,压缩变形量对应力应变关系的影响很小。探明了镁合金变形软化的主要机制是动态再结晶。根据实验分析,合金的热加工宜在400~450℃温度范围内进行,并且挤压态较铸态更易热挤压成型,更有助于晶粒细化。  相似文献   

7.
采用Gleeble-1500D热模拟机对AZ31B-0.8Nd稀土镁合金在应变速率为0.01~1s^-1,温度为300~450℃,最大变形量约为70%的条件下,进行了恒应变速率高温压缩模拟实验,研究了实验合金在高温变形时的流变应力与应变速率及变形温度之间的关系和组织变化。结果表明:合金的流变应力随应变速率的增大而增加.随应变温度的升高而减小;在应变速率和变形温度相同时,挤压态试样的流变应力明显低于铸态试样的流变应力。压缩变形量对应力应变关系的影响很小。探明了镁合金变形软化的主要机制是动态再结晶。根据实验分析,合金的热加工宜在400~450℃温度范围内进行,并且挤压态较铸态更易热挤压成型,更有助于晶粒细化。  相似文献   

8.
ZK60镁合金热压缩变形流变应力行为与预测   总被引:4,自引:0,他引:4  
在变形温度为523---673 K, 应变速率为0.001---1 s-1的条件下, 采用Gleeble--1500热模拟试验机对ZK60镁合金的热变形行为进行了研究. 结果表明, ZK60镁合金流变应力随变形温度升高和应变速率的降低而减小. 其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段, 但在温度较高和应变速率较小时, 过渡阶段不很明显. 建立了一个包含应变的流变应力预测模型, 模型中的9个独立参数可以通过非线性最小二乘法拟合求得, 预测的流变应力曲线与实验结果吻合较好.  相似文献   

9.
Mg-Gd-Y-Zr镁合金热压缩流变应力的研究   总被引:2,自引:0,他引:2  
采用恒应变速率高温压缩模拟实验,对Mg-Gd-Y-Zr镁合金在应变速率为0.001~1.0s^-1、变形温度为150~500℃条件下的流变应力行为进行了研究,计算了变形激活能及相应的应力指数,建立了峰值流变应力方程。结果表明:在恒温条件下,合金的流变应力随应变速率的增大而增大;在恒应变速率条件下,合金的流变应力随温度的升高而降低;在350-500℃,0.001~1.s^-1的变形条件下,变形激活能和应力指数分别为2215kJ/mol和368;流变应力方程计算出的峰值应力与真实值基本吻合。  相似文献   

10.
采用Gleeble-1500热模拟机对AZ91镁合金进行了高温压缩变形实验,分析了该合金在变形温度为250~400℃、应变速率为0.001~1 s-1条件下流变应力及组织演变规律。结果表明:合金的热变形过程均表现出明显的动态再结晶特征,其流变应力及组织均受变形温度和应变速率的因素影响显著;流变应力随变形温度的升高、应变速率的减小而降低,而再结晶晶粒尺寸则随之增大,且再结晶程度进行越为充分,其再结晶晶粒大小基本随Z参数自然对数值的增大而呈指数递减规律。  相似文献   

11.
在分析三种Arrhenius型方程对建立GH141和GH907合金本构关系适用性的基础上,提出了以Zener-Hollomon参数为主要变量,并综合考虑温度和变形程度对流动应力影响的建立本构关系的方法。本文提出的建立本构关系的方法对变形高温合金有普适性。  相似文献   

12.
通过采用单向拉伸实验,在高温蠕变试验机上测定了含稀土耐高温ME20M镁合金板料在不同拉伸速度、不同温度下的力学性能,并分析了其特点与原因;利用实验得出的应力应变数据,校验了目前提出的适用于工程实际应用的含常软化因子的镁合金高温流变应力数学模型,在含常软化因子的镁合金高温流变应力数学模型的基础上,提出了适用于更大应变速率范围、温度范围的含非常软化因子的镁合金高温流变应力数学模型。通过与BP神经网络预测结果等比较,上述两个数学模型能较好地预测不同温度、应变速率范围的镁合金流变应力,但精度不如神经网络模型。  相似文献   

13.
通过对轧制态Mg-4Zn-2Y合金在不同热变形温度以及应变速率下进行高温拉伸试验,研究了Mg-4Zn-2Y合金在不同工艺参数下进行热变形时流变应力的变化规律,并绘制了热加工图。结果表明,流变应力与变形温度以及应变速率均有关系,热变形温度不变时,材料的最大流变应力会随着应变速率的提高而增大;在应变速率不变时,材料的最大流变应力随着变形温度的升高会逐渐下降。采用双曲正弦修正的本构模型确定了轧制态Mg-4Zn-2Y合金的变形激活能Q=242 233.2 J·mol-1,应力指数n=8.09。通过热加工图确定了Mg-4Zn-2Y合金的可加工区域为472.15~545.00 K,10-3~10-4 s-1和545.00~672.15 K,10-4~10-1 s-1。  相似文献   

14.
采用Gleeble-1500D热模拟机研究了7055铝合金在应变速率为0.01、0.1和1s-1、变形温度为300~450℃,最大真应变为0.7条件下的高温塑性变形行为,分析了合金流变应力与应变速率、变形温度之间的关系,计算了合金高温塑性变形时的变形激活能,并观察了合金变形过程中显微组织变化情况。结果表明:合金在热变形过程中流变应力随温度的升高而减小,随应变速率的增加而增大,7055铝合金的高温塑性变形行为可以用包含Zener-Hollomon参数的流变应力方程进行描述。该合金在实验条件范围内热变形以动态回复为主要软化机制并伴随极少量的再结晶发生。  相似文献   

15.
研究了不同含氢量对Ti600合金的热塑性及力学性能的影响规律.分析了变形温度、变形程度和应变速率对流动应力的影响.研究发现,Ti600合金置氢处理后,峰值应力明显降低,对应变速率的敏感程度有所降低,对温度变化的敏感程度降低.当氢含量为0.2%时Ti600合金表现出较低的变形抗力和较好的成形性能.  相似文献   

16.
1. Introduction New spray formed 70Si30Al alloy developed for electronic packaging application has excellent physical characteristics [1-5], which include low coefficiency of thermal expansion (6.8 × 10?6/K), high thermal conductivity (120 W/(m?K)), and low density (2.4 g/cm3), therefore, the exploitation and application of the alloy have an extensive prospect. To evaluate the deformation characteristics of spray formed 70Si30Al and to determine the appropriate hot deformation procedure of …  相似文献   

17.
The relationship of true stress and true strain of AZ41M magnesium alloy under twin-roll-cast (TRC) and hot compression was analyzed using a Gleeble 1500 machine. Microstructural evolutions of the TRC magnesium alloy under different deformation conditions (strain, strain rate and deformation temperature) were examined using optical microscopy and discussed. The relationship of true stress and true strain predicted that lower deformation temperature and higher strain rate caused sharp strain hardening. Meanwhile, the flow stress curve turned into a steady state at high temperature and lower strain rate. The intermediate temperature and strain rate (623 K and 0.01 s−1) is appropriate.  相似文献   

18.
镁-稀土合金热变形特点及挤压参数的确定   总被引:1,自引:0,他引:1  
采用热/力压缩模拟实验研究了3种镁-稀土合金在不同变形条件下高温塑性变形行为。结果表明,在相同的应变速率、变形温度条件下,含Ce的合金流变应力小于含Nd的合金和含Nd和Y的合金。从热加工难易程度的角度考虑,含Ce的合金更适合挤压成型。  相似文献   

19.
The flow stress of spray formed 70Si30Al alloy was studied by hot compression on a Gleeble- 1500 test machine. The experimental results indicated that the flow stress depends on the strain rate and the deformation temperature. The flow stress increases with an increase in strain rate at a given deformation temperature. The flow stress decreases with the deformation temperature increasing at a given strain rate. The relational expression among the flow stress, the swain rate, and the deformation temperature satisfies the Arrhenius equation. The deformation activation energy of 70Si30Al alloy during hot deformation is 866.27 kJ/mol from the Arrhenius equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号