首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《中兴通讯技术》2020,(1):45-49
针对单车感知无法满足未来自动驾驶安全需求的现状,面向多车传感器信息融合与时效性共享问题,提出了基于感知-通信-计算融合的智能车联网方法与解决思路。该方法有助于提高自动驾驶车辆的协同环境感知能力,并通过移动边缘计算(MEC)技术降低车间感知信息传输负载,提高多车协同的信息融合与处理效率,最终实现基于多车智能协同的安全自动驾驶。  相似文献   

2.
本文提出一种利用路侧感知设备的数据融合,以云计算为支撑的车路协同系统。系统通过准确感知路面信息,利用边缘计算快速输出结果搭载专用网络发送车端,辅助自动驾驶汽车融合自身感知信息第一时间做出驾驶决策。通过实际验证在V2X环境下开放道路盲区显著降低,突发事故预警更加提前,辅助驾驶可靠性显著提高。  相似文献   

3.
由于自动驾驶无法准确感知障碍物信息,且感知误差较高,为了提高自动驾驶避障能力,提出基于毫米波传感器与激光雷达信号融合的自动驾驶障碍物感知方法。将毫米波传感器内置于自动驾驶装置中,采集自动驾驶装置与障碍物之间的激光雷达回波信号,采用匹配滤波器进行干扰滤波处理,提取传感信号的功率谱密度特征量,采用小波多尺度分解的方法实现信号时频转换,通过Wigner-Vill分布检测和多分辨特征聚类,分析自动驾驶激光雷达毫米波传感信号回波特征,根据波束形成和信号融合结果实现对障碍物感知和自适应定位。测试结果表明,采用该方法进行自动驾驶障碍物感知的准确性较高,感知误差较低,最低为0.01,响应速度较快,最快为0.1 s,收敛迭代步数较小,定位能力较强,提高了自动驾驶的环境适应性。  相似文献   

4.
随着5G商用的临近,车联网的发展,获得了高度的重视和空前的活跃。早期的单车智能自动驾驶,存在稳定性欠佳和定位精度不足等问题,难以适应新时代的需求。而这些问题,可利用5G技术得到良好解决。基于此,特提出一种基于MEC的网联自动驾驶高精度定位的解决方案,利用MEC的计算能力、感知能力和协作能力,通过在边缘云上收集、处理、融合来自于路侧和车辆的多类型传感器信息,为车提供高精度的位置计算服务。  相似文献   

5.
本文提出了一种5G车路协同自动驾驶解决方案,该方案主要依托5G移动通信、高精度定位技术、五维时空融合技术、边缘计算、边云协同等技术,实现边缘平台算力部署,构建“端-边缘-云”分层架构,建立智能可靠车联网通信、车辆的实时高精度定位、交通态势感知、交通管控等技术体系,实现5G车路协同,全面提升车辆感知决策控制能力。当前,该方案已在武汉经开区智能网联汽车与智慧道路自动驾驶示范区应用落地。  相似文献   

6.
针对边端计算环境下存在感知图像数据泄露与隐私保护分类框架计算低效的问题,提出一种边缘协同的轻量级隐私保护分类框架(PPCF),该框架支持加密特征提取和分类,在边缘节点协同分类过程中实现对数据传输和计算过程的隐私保护.首先,基于加性秘密共享技术设计一系列安全计算协议;在此基础上,两台非共谋的边缘服务器协同执行安全卷积、安...  相似文献   

7.
自动驾驶是汽车产业与人工智能、物联网、高性能计算等新一代信息技术深度融合的产物,是当前全球汽车与交通出行领域智能化和网联化发展的主要方向。早期基于单车智能的自动驾驶,存在感知受限、决策失误、协同困难等不足,基于此,文章提出一种基于多维时空融合的车路协同系统,该系统将5G的优势引入到V2X系统,通过构建"经度+维度+高度+时间+环境"的动态区域空间图,可为基于网联智能的自动驾驶提供高效支撑。  相似文献   

8.
随着5G技术的成熟与应用落地,各类依赖与5G技术的产业也应运而生,车联网领域的车路协同自动驾驶,就是一个典型的例子。本文提出一种基于5G技术的车路协同自动驾驶技术架构。该架构结合5G通信技术优势,利用边缘计算、5G智能驾驶分级决策架构、五维时空融合感知、车路协同机制构建、测试验证应用原型等先进性技术,融合打造了一套集"5G网联+车路协同"于一体的智能网联智能驾驶技术,可推动相关技术标准规范成立。  相似文献   

9.
随着自动驾驶概率的热度逐渐升温,大量社会资源倾入自动驾驶领域,而智能驾驶的实现第一步就是感知周围的环境.本文讨论的是基于毫米波雷达的目标追踪方案,通过设置多个收发天线的方式,造成同一连续变频波在接收端的相位差,相位差变化的大小即可捕捉并追踪目标物的方位.对于方位、速度都差不多的探测点即可聚类为单一目标.  相似文献   

10.
随着信息技术的不断发展,供电网络中边缘设备的数据量迅速增加,对数据处理的实时性和传输带宽提出了更高要求。建立了配电网安全风险图,通过势函数对安全风险进行计算分析,得到节点势值和关键节点等数据;基于边缘计算建立智能电网多源异构数据监测模型,可以实现配电网故障的及时感知和实时响应,缩短停电时间,提高了配电网的供电可靠性和用户满意度。以某地区配电网线路为例,对节点互相作用及关联性进行计算和对比,验证了势函数在边缘计算风险评估中的有效性,能够为配电网故障诊断提供理论指导。  相似文献   

11.
自动驾驶的实现需要大量车载传感器的支持,然而,在有限车载计算资源条件下,由传感器所产生的庞大数据量使得自动驾驶任务的实时性难以满足,成为阻碍自动驾驶技术进一步发展的重要阻力。通过将驾驶任务进行协作处理,因而充分利用多个协作车辆的计算资源,自动协同驾驶成为解决该问题的新途径。而如何形成多车编队并实现编队中驾驶任务分配则是实现自动协同驾驶的关键。该文首先采用排队理论G/G/1模型建立一种普适性车辆编队网络拓扑分析模型,充分考虑编队内车辆间的任务协作能力和单个车辆的任务负荷,得出任务的处理时延和车辆系统中的平均任务数;其次,采用支持向量机(SVM)方法,基于车辆的负荷程度及处理能力将车辆的“空闲”、“繁忙”两状态进行分类,进而建立针对车辆协作任务分配的候选车辆集。最后,基于上述分析,该文提出面向多车编队协同驾驶的任务均衡策略——基于分类的贪婪均衡策略(C-GBS),以充分平衡编队内所有车辆的任务负荷并利用不同车辆的任务处理能力。仿真结果表明,该策略能够减小重负荷网络中的任务处理时延,有效提升自动驾驶车辆的任务处理效率。  相似文献   

12.
为了应对车联网中计算资源密集、可分离型任务的卸载环境动态变化和不同协同节点通信、计算资源存在差异的问题,提出了一种在V2X下多协同节点串行卸载、并行计算的分布式卸载策略。该策略利用车辆可预测的行驶轨迹,对任务进行不等拆分,分布式计算于本地、MEC及协同车辆,建立系统时延最小化的优化问题。为求解该优化问题,设计了博弈论的卸载机制,以实现协同节点串行卸载的执行顺序;鉴于车联网的动态时变特性,利用序列二次规划算法,给出了最优的任务不等拆分。仿真结果表明,所提策略能够有效减少计算任务系统时延,且当多协同节点分布式卸载服务时,所提策略在不同的参数条件下仍然能够保持稳定的系统性能。  相似文献   

13.
为了应对车联网中计算资源密集、可分离型任务的卸载环境动态变化和不同协同节点通信、计算资源存在差异的问题,提出了一种在V2X下多协同节点串行卸载、并行计算的分布式卸载策略。该策略利用车辆可预测的行驶轨迹,对任务进行不等拆分,分布式计算于本地、MEC及协同车辆,建立系统时延最小化的优化问题。为求解该优化问题,设计了博弈论的卸载机制,以实现协同节点串行卸载的执行顺序;鉴于车联网的动态时变特性,利用序列二次规划算法,给出了最优的任务不等拆分。仿真结果表明,所提策略能够有效减少计算任务系统时延,且当多协同节点分布式卸载服务时,所提策略在不同的参数条件下仍然能够保持稳定的系统性能。  相似文献   

14.
Internet of vehicles (IoV) comprises connected vehicles and connected autonomous vehicles and offers numerous benefits for ensuring traffic and safety competence. Several IoV applications are delay-sensitive and need resources for computation and data storage that are not provided by vehicles. Therefore, these tasks are always offloaded to highly powerful nodes, namely, fog, which can bring resources nearer to the networking edges, reducing both traffic congestion and load. Besides, the mechanism of offloading the tasks to the fog nodes in terms of delay, computing power, and completion time remains still as an open concern. Hence, an efficient task offloading strategy, named Aquila Student Psychology Optimization Algorithm (ASPOA), is developed for offloading the IoV tasks in a fog setting in terms of the objectives, such as delay, computing power, and completion time. The devised optimization algorithm, known as ASPOA, is the incorporation of Aquila Optimizer (AO) and Student Psychology Based Optimization (SPBO). Task offloading in the IoV-fog system selects suitable resources for executing the tasks of the vehicles by considering several constraints and parameters to satisfy the user requirements. The simulation outcomes have shown that the devised ASPOA-based task offloading method has achieved better performance by achieving a minimum delay of 0.0009 s, minimum computing power of 8.884 W, and minimum completion time of 0.441 s.  相似文献   

15.
在车联网(IOV)环境中,如果将车辆的计算任务都放置在云平台执行,无法满足对于信息处理的实时性,考虑移动边缘计算技术以及任务卸载策略,将用户的计算任务卸载到靠近设备边缘的服务器去执行。但是在密集的环境下,如果所有的任务都卸载到附近的边缘服务器去执行,同样会给边缘服务器带来巨大的负载。该文提出基于模拟退火机制的车辆用户移动边缘计算任务卸载新方法,通过定义用户的任务计算卸载效用,综合考虑时耗和能耗,结合模拟退火机制,根据当前道路的密集程度对系统卸载效用进行优化,改变用户的卸载决策,选择在本地执行或者卸载到边缘服务器上执行,使得在给定的环境下的所有用户都能得到满足低时延高质量的服务。仿真结果表明,该算法在减少用户任务计算时间的同时降低了能量消耗。  相似文献   

16.
In order to improve the efficiency of tasks processing and reduce the energy consumption of new energy vehicle (NEV), an adaptive dual task offloading decision-making scheme for Internet of vehicles is proposed based on information-assisted service of road side units (RSUs) and task offloading theory. Taking the roadside parking space recommendation service as the specific application Scenario, the task offloading model is built and a hierarchical self-organizing network model is constructed, which utilizes the computing power sharing among nodes, RSUs and mobile edge computing (MEC) servers. The task scheduling is performed through the adaptive task offloading decision algorithm, which helps to realize the available parking space recommendation service which is energy-saving and environmental-friendly. Compared with these traditional task offloading decisions, the proposed scheme takes less time and less energy in the whole process of tasks. Simulation results testified the effectiveness of the proposed scheme.  相似文献   

17.
为提高计算任务卸载的效率,提出了一种基于D2D通信、移动边缘计算和云计算的分层任务卸载框架,并引入D2D协作中继技术辅助用户接入远端计算资源。针对所提任务卸载框架在多用户场景中可能存在上行通信拥塞、边缘计算资源受限、D2D复用干扰和云计算回程时延等问题,设计了一种基于博弈论的卸载调度和负载均衡方案,充分利用了所提任务卸载框架中各层计算和通信资源。仿真结果表明,所提方案能够有效降低端到端时延和卸载能耗,并在资源受限的条件下具有良好的稳定性。  相似文献   

18.
In this paper, we study the task offloading optimization problem in satellite edge computing environments to reduce the whole communication latency and energy consumption so as to enhance the offloading success rate. A three-tier machine learning framework consisting of collaborative edge devices, edge data centers, and cloud data centers has been proposed to ensure an efficient task execution. To accomplish this goal, we also propose a Q-learning-based reinforcement learning offloading strategy in which both the time-sensitive constraints and data requirements of the computation-intensive tasks are taken into account. It enables various types of tasks to select the most suitable satellite nodes for the computing deployment. Simulation results show that our algorithm outperforms other baseline algorithms in terms of latency, energy consumption, and successful execution efficiency.  相似文献   

19.
In order to achieve the best balance between latency,computational rate and energy consumption,for a edge access network of IoV,a distribution offloading algorithm based on deep Q network (DQN) was considered.Firstly,these tasks of different vehicles were prioritized according to the analytic hierarchy process (AHP),so as to give different weights to the task processing rate to establish a relationship model.Secondly,by introducing edge computing based on DQN,the task offloading model was established by making weighted sum of task processing rate as optimization goal,which realized the long-term utility of strategies for offloading decisions.The performance evaluation results show that,compared with the Q-learning algorithm,the average task processing delay of the proposed method can effectively improve the task offload efficiency.  相似文献   

20.
随着车联网技术的演进,自动驾驶在单车智能的基础上,又有了新的发展形态——车路协同自动驾驶。通过“人-车-路-云”深度融合形成的一体化复杂信息物理系统(cyber physical system,CPS),可以与自动驾驶车辆实现协同感知、协同决策规划甚至协同控制,提升自动驾驶安全性,帮助克服各类复杂交通环境。首先介绍了车路协同的复杂信息物理系统的概念内涵和总体架构,并提出了车路协同自动驾驶的一系列典型应用场景、技术原理、C-V2X(cellular vehicle-to-everything)性能要求、车路协同系统功能与性能要求,可以为下一阶段智能网联汽车与智能交通的深度融合发展提供参考和解决思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号