首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.

In this paper, a novel meta-heuristic algorithm called Fireworks Optimization Algorithm (FOA) is introduced with few control parameters for discrete and continuous optimization problems. This algorithm is inspired from explosion pyrotechnic devices producing colorful spikes like red, blue and silver. By modelling the explosion behavior of the Fireworks in the sky, the search space can be swept efficiently to find the global optima. To improve the balance between the exploration and exploitation of individuals, three categories are defined to avoid local optimal traps and applied to the search agents. Each category has a different task and predefined updating position rules. A grouping strategy is considered to prevent the algorithm from premature convergence. The performance of FOA is demonstrated over 15 standard benchmarks in the continuous version and 30 images thresholding problems in the discrete version. The obtained results reveal the superiority of the proposed algorithm with fewer input parameters over other state-of-the-art optimization methods in most cases.

  相似文献   

2.

Jaya algorithm is one of the heuristic algorithms developed in recent years. The most important difference from other heuristic algorithms is that it updates its position according to its best and worst position. In addition to its simplicity, there is no algorithm-specific parameter. Because of these advantages, it has been preferred by researchers for problem-solving in the literature. In this study, the random walk phase of the original Jaya algorithm is developed and the Improved Jaya Algorithm (IJaya) is proposed. IJaya has been tested for success in eighteen classic benchmark test functions. Although the performance of the original Jaya algorithm has been tested at low dimensions in the literature, its success in large sizes has not been tested. In this study, IJaya's success in 10, 20, 30, 100, 500, and 1000 dimensions was examined. Also, the success of IJaya was tested in different population sizes. It has been proven that IJaya's performance has increased with the tests performed. Test results show that IJaya displays good performance and can be used as an alternative method for constrained optimization. In addition, three different engineering design problems were tested in different population sizes to demonstrate the achievements of Jaya and IJaya. According to the results, IJaya can be used as an optimization algorithm in the literature for continuous optimization and large-scale optimization problems.

  相似文献   

3.

This paper addresses multi-objective optimization and the truss optimization problem employing a novel meta-heuristic that is based on the real-world water cycle behavior in rivers, rainfalls, streams, etc. This meta-heuristic is called multi-objective water cycle algorithm (MOWCA) which is receiving great attention from researchers due to the good performance in handling optimization problems in different fields. Additionally, the hyperbolic spiral movement is integrated into the basic MOWCA to guide the agents throughout the search space. Consequently, under this hyperbolic spiral movement, the exploitation ability of the proposed MOSWCA is promoted. To assess the robustness and coherence of the MOSWCA, the performance of the proposed MOSWCA is analysed on some multi-objective optimisation benchmark functions; and three truss structure optimization problems. The results obtained by the MOSWCA of all test problems were compared with various multi-objective meta-heuristic algorithms reported in the literature. From the empirical results, it is evident that the suggested approach reaches an excellent performance when solving multi-objective optimization and the truss optimization problems.

  相似文献   

4.
Artificial bee colony (ABC) algorithm, one of the swarm intelligence algorithms, has been proposed for continuous optimization, inspired intelligent behaviors of real honey bee colony. For the optimization problems having binary structured solution space, the basic ABC algorithm should be modified because its basic version is proposed for solving continuous optimization problems. In this study, an adapted version of ABC, ABCbin for short, is proposed for binary optimization. In the proposed model for solving binary optimization problems, despite the fact that artificial agents in the algorithm works on the continuous solution space, the food source position obtained by the artificial agents is converted to binary values, before the objective function specific for the problem is evaluated. The accuracy and performance of the proposed approach have been examined on well-known 15 benchmark instances of uncapacitated facility location problem, and the results obtained by ABCbin are compared with the results of continuous particle swarm optimization (CPSO), binary particle swarm optimization (BPSO), improved binary particle swarm optimization (IBPSO), binary artificial bee colony algorithm (binABC) and discrete artificial bee colony algorithm (DisABC). The performance of ABCbin is also analyzed under the change of control parameter values. The experimental results and comparisons show that proposed ABCbin is an alternative and simple binary optimization tool in terms of solution quality and robustness.  相似文献   

5.

迭代动态规划(IDP) 作为一种求解非线性问题的离散算法, 其寻优精度和收敛速度受到时间段划分的影响. 通常, 时间段划分依赖主观经验, 缺乏科学有效的指导. 针对终端时刻固定的动态优化问题, 提出一种自适应变步长IDP 算法, 综合考虑控制变量与目标函数值的变化, 对时间段数量、长度和切换点进行优化. 将该方法应用于间歇过程优化, 结果表明其能够智能分配时间段数量与长度, 可有效提升寻优精度.

  相似文献   

6.

Optimization techniques, specially evolutionary algorithms, have been widely used for solving various scientific and engineering optimization problems because of their flexibility and simplicity. In this paper, a novel metaheuristic optimization method, namely human behavior-based optimization (HBBO), is presented. Despite many of the optimization algorithms that use nature as the principal source of inspiration, HBBO uses the human behavior as the main source of inspiration. In this paper, first some human behaviors that are needed to understand the algorithm are discussed and after that it is shown that how it can be used for solving the practical optimization problems. HBBO is capable of solving many types of optimization problems such as high-dimensional multimodal functions, which have multiple local minima, and unimodal functions. In order to demonstrate the performance of HBBO, the proposed algorithm has been tested on a set of well-known benchmark functions and compared with other optimization algorithms. The results have been shown that this algorithm outperforms other optimization algorithms in terms of algorithm reliability, result accuracy and convergence speed.

  相似文献   

7.
实际工程中存在大量的离散变量优化问题,基于MSC Nastran优化框架实现新的离散变量算法,有利于新算法本身的推广应用和解决大规模的实际复杂工程问题.通过修改MSC Nastran输入文件的方法实现离散变量的优化算法——GSFP算法.GSFP是基于广义形函数的离散变量优化算法,它将离散变量优化问题转化成连续变量优化问题,通过惩罚等措施使得最优设计结果最终收敛到离散解,该方法能够解决大规模的实际离散变量优化问题.最后以桁架截面选型优化为应用背景,给出GSFP算法实现的基本原理和方法.  相似文献   

8.

提出一种三态协调搜索多目标粒子群优化算法. 该算法提出的三态指导粒子选择策略可以很好地协调算法的局部和全局搜索能力, 且算法改进了传统的外部档案保存机制, 同时引入3 种突变因子, 使获得的非劣解具有更好的分散性. 通过对标准测试函数的求解, 并与其他经典多目标优化算法比较, 表明了新算法在收敛性和多样性方面均有较大的优越性. 最后分析了区域划分系数对所提出算法性能的影响.

  相似文献   

9.

In this paper, a new hybrid algorithm is introduced, combining two Harris Hawks Optimizer (HHO) and the Imperialist Competitive Algorithm (ICA) to achieve a better search strategy. HHO is a new population-based, nature-inspired optimization algorithm that mimics Harris Hawks cooperative behavior and chasing style in nature called surprise pounce HHO. It is a robust algorithm in exploitation, but has an unfavorable performance in exploring the search space, while ICA has a better performance in exploration; thus, combining these two algorithms produces an effective hybrid algorithm. The hybrid algorithm is called Imperialist Competitive Harris Hawks Optimization (ICHHO). The proposed hybrid algorithm's effectiveness is examined by comparing other nature-inspired techniques, 23 mathematical benchmark problems, and several well-known structural engineering problems. The results successfully indicate the proposed hybrid algorithm's competitive performance compared to HHO, ICA, and some other well-established algorithms.

  相似文献   

10.

帝国竞争算法是一种已在连续优化问题上取得较好效果的新型社会政治算法. 为了使该算法更好地应用于离散型组合优化问题, 提出一种求解旅行商问题的新型帝国竞争算法. 在传统算法的基础上, 改变初始帝国的生成方式; 同化过程采取替换重建方式, 以提升求解质量; 革命过程中引入自适应变异算子, 以增强搜索能力; 殖民竞争过程中调整了殖民地分配方式; 算法加入帝国增强过程, 以加快寻化速度. 实验结果表明, 新型帝国竞争算法求解质量高、收敛速度快.

  相似文献   

11.
Xu  Shuhui  Wang  Yong  Lu  Peichuan 《Neural computing & applications》2017,28(7):1667-1682

Imperialist competitive algorithm is a nascent meta-heuristic algorithm which has good performance. However, it also often suffers premature convergence and falls into local optimal area when employed to solve complex problems. To enhance its performance further, an improved approach which uses mutation operators to change the behavior of the imperialists is proposed in this article. This improved approach is simple in structure and is very easy to be carried out. Three different mutation operators, the Gaussian mutation, the Cauchy mutation and the Lévy mutation, are investigated particularly by experiments. The experimental results suggest that all the three improved algorithms have faster convergence rate, better global search ability and better stability than the original algorithm. Furthermore, the three improved algorithms are also compared with other two excellent algorithms on some benchmark functions and compared with other four existing algorithms on one real-world optimization problem. The comparisons suggest that the proposed algorithms have their own specialties and good applicability. They can obtain better results on some functions than those contrastive approaches.

  相似文献   

12.
加速收敛的粒子群优化算法   总被引:5,自引:0,他引:5  
任子晖  王坚 《控制与决策》2011,26(2):201-206
在基本粒子群优化算法的理论分析的基础上,提出一种加速收敛的粒子群优化算法,并从理论上证明了该算法的快速收敛性,同时对该算法中的参数进行了优化.为了防止其在快速收敛的同时陷入局部最优,采用依赖部分最差粒子信息的变异操作.最后通过与其他几种经典粒子群优化算法的性能比较,表明了该算法的高效和稳健,且明显优于现有的几种经典的粒子群算法.  相似文献   

13.
A relative difference quotient algorithm for discrete optimization   总被引:9,自引:0,他引:9  
According to the characteristics of discrete optimization, the concept of a relative difference quotient is proposed, and a highly accurate heuristic algorithm, a relative difference quotient algorithm, is developed for a class of discrete optimization problems with monotonic objective functions and constraint functions. The algorithm starts from the minimum point of the objective function outside the feasible region and advances along the direction of minimum increment of the objective function and maximum decrement of constraint functions to find a better approximate optimum solution. In order to evaluate the performance of the algorithm, a stochastic numerical test and a statistical analysis for the test results are also completed. The algorithm has been successfully applied to the discrete optimization of structures.  相似文献   

14.

The structural dynamic response predominantly depends upon natural frequencies which fabricate these as a controlling parameter for dynamic response of the truss. However, truss optimization problems subjected to multiple fundamental frequency constraints with shape and size variables are more arduous due to its characteristics like non-convexity, non-linearity, and implicit with respect to design variables. In addition, mass minimization with frequency constraints are conflicting in nature which intricate optimization problem. Using meta-heuristic for such kind of problem requires harmony between exploration and exploitation to regulate the performance of the algorithm. This paper proposes a modification of a nature inspired Symbiotic Organisms Search (SOS) algorithm called a Modified SOS (MSOS) algorithm to enhance its efficacy of accuracy in search (exploitation) together with exploration by introducing an adaptive benefit factor and modified parasitism vector. These modifications improved search efficiency of the algorithm with a good balance between exploration and exploitation, which has been partially investigated so far. The feasibility and effectiveness of proposed algorithm is studied with six truss design problems. The results of benchmark planar/space trusses are compared with other meta-heuristics. Complementarily the feasibility and effectiveness of the proposed algorithms are investigated by three unimodal functions, thirteen multimodal functions, and six hybrid functions of the CEC2014 test suit. The experimental results show that MSOS is more reliable and efficient as compared to the basis SOS algorithm and other state-of-the-art algorithms. Moreover, the MSOS algorithm provides competitive results compared to the existing meta-heuristics in the literature.

  相似文献   

15.
The PSOGSA is a novel hybrid optimization algorithm, combining strengths of both particle swarm optimization (PSO) and gravitational search algorithm (GSA). It has been proven that this algorithm outperforms both PSO and GSA in terms of improved exploration and exploitation. The original version of this algorithm is well suited for problems with continuous search space. Some problems, however, have binary parameters. This paper proposes a binary version of hybrid PSOGSA called BPSOGSA to solve these kinds of optimization problems. The paper also considers integration of adaptive values to further balance exploration and exploitation of BPSOGSA. In order to evaluate the efficiencies of the proposed binary algorithm, 22 benchmark functions are employed and divided into three groups: unimodal, multimodal, and composite. The experimental results confirm better performance of BPSOGSA compared with binary gravitational search algorithm (BGSA), binary particle swarm optimization (BPSO), and genetic algorithm in terms of avoiding local minima and convergence rate.  相似文献   

16.
连续空间的二元粒子群算法通过搜索空间与解空间相分离,在离散域及连续域优化问题中均得到较好的应用,但标准二元粒子群算法离散化机理存在的缺陷以及"探索"和"利用"的冲突均限制了二元粒子群算法更好的发展。从离散化机理的改进、算法的融合、协同控制以及算法的描述工具等方面入手,讨论了近年来对二元粒子群算法的若干改进及应用;最后评述了二元粒子群算法未来的研究方向和主要研究内容。  相似文献   

17.
针对区间参数多目标优化问题,提出一种基于模糊支配的多目标粒子群优化算法。首先,定义基于决策者悲观程度的模糊支配关系,用于比较解的优劣;然后,定义一种适于区间目标值的拥挤距离,以更新外部存储器并从中选择领导粒子;最后,对多个区间多目标测试函数进行仿真实验,实验结果验证了所提出算法的有效性。  相似文献   

18.
差分进化是一种求解连续优化问题的高效算法。然而差分进化算法求解大规模优化问题时,随着问题维数的增加,算法的性能下降,且搜索时间呈指数上升。针对此问题,本文提出了一种新的基于Spark的合作协同差分进化算法(SparkDECC)。SparkDECC采用分治策略,首先通过随机分组方法将高维优化问题分解成多个低维子问题,然后利用Spark的弹性分布式数据模型,对每个子问题并行求解,最后利用协同机制得到高维问题的完整解。通过在13个高维测试函数上进行的对比实验和分析,实验结果表明算法加速明显且可扩展性好,验证了SparkDECC的有效性和适用性。  相似文献   

19.

The newly proposed Generalized Normal Distribution Optimization (GNDO) algorithm is used to design the truss structures with optimal weight. All trusses optimized have frequency constraints, which make them very challenging optimization problems. A large number of locally optimal solutions and non-convexity of search space make them difficult to solve, therefore, they are suitable for testing the performance of optimization algorithm. This work investigates whether the proposed algorithm is capable of coping with such problems. To evaluate the GNDO algorithm, three benchmark truss optimization problems are considered with frequency constraints. Numerical data show GNDO’s reliability, stability, and efficiency for structural optimization problems than other meta-heuristic algorithms. We thoroughly analyse and investigate the performance of GNDO in this engineering area for the first time in the literature.

  相似文献   

20.
Fan  Qian  Chen  Zhenjian  Li  Zhao  Xia  Zhanghua  Yu  Jiayong  Wang  Dongzheng 《Engineering with Computers》2021,37(3):1851-1878

Similar to other swarm-based algorithms, the recently developed whale optimization algorithm (WOA) has the problems of low accuracy and slow convergence. It is also easy to fall into local optimum. Moreover, WOA and its variants cannot perform well enough in solving high-dimensional optimization problems. This paper puts forward a new improved WOA with joint search mechanisms called JSWOA for solving the above disadvantages. First, the improved algorithm uses tent chaotic map to maintain the diversity of the initial population for global search. Second, a new adaptive inertia weight is given to improve the convergence accuracy and speed, together with jump out from local optimum. Finally, to enhance the quality and diversity of the whale population, as well as increase the probability of obtaining global optimal solution, opposition-based learning mechanism is used to update the individuals of the whale population continuously during each iteration process. The performance of the proposed JSWOA is tested by twenty-three benchmark functions of various types and dimensions. Then, the results are compared with the basic WOA, several variants of WOA and other swarm-based intelligent algorithms. The experimental results show that the proposed JSWOA algorithm with multi-mechanisms is superior to WOA and the other state-of-the-art algorithms in the competition, exhibiting remarkable advantages in the solution accuracy and convergence speed. It is also suitable for dealing with high-dimensional global optimization problems.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号