共查询到20条相似文献,搜索用时 31 毫秒
1.
综合纹理特征的高光谱遥感图像分类方法 总被引:1,自引:0,他引:1
吴昊 《计算机工程与设计》2012,33(5):1993-1996,2006
提出了一种基于Gabor滤波的高光谱遥感图像支持向量机(SVM)分类方法,通过将Gabor滤波器组产生的纹理特征引入SVM分类,不仅充分利用了SVM适于解决高维数据分类问题的优势,而且在分类过程中实现了空间结构信息和光谱信息的综合使用,有效利用了高光谱图像“图谱合一”的特性.采用中科院上海技术物理研究所研制的模块化成像光谱仪OMIS (operative modular imaging spectrometry)真实数据进行的实验,实验结果表明,该方法提高了分类效果,分类结果更具有空间连贯性,并且能有效地克服噪声的影响. 相似文献
2.
在主动学习的基础上,提出一种基于SLIC的高光谱遥感图像主动分类方法。首先提取图像纹理特征并与光谱特征融合,使用PCA对新数据进行降维,取前三个主成分构成假彩色图像,然后使用SLIC处理该图像获得超像素;接着随机抽取定量超像素作为初始训练样本,样本光谱信息为超像素样本中所有像素点的光谱信息均值,样本标签为超像素中出现次数最多的类别;然后通过主动学习得到SVM分类器;最后使用分类器对超像素分类得到其类别,并将超像素类别赋予其包含的像素点,从而达到高光谱遥感图像分类的目的。实验表明:该方法明显降低了主动学习过程的时间消耗,有效地提高了分类效果,其OA,AA和Kappa值显著优于未使用SLIC的主动学习方法。 相似文献
3.
摘 要:针对高光谱图像标记样本量少,提取特征不充分以及提取到的特征不区分贡献度的问题,提出一个新型的 DenseNet-Attention 网络模型(DANet)。首先,该模型利用三维卷积核同步提取联合光谱空间特征,同时密集连接网络(DenseNet)的稠密连接块除了能够充分提取更加鲁棒的特征外,还减少了大量参数;其次,自注意力(self-attention)机制作为一个模块加入到稠密连接块中,可以使上层提取到的特征在进入下一层网络之前,经过该模块对其进行权重分配,使具有丰富的物类别信息的特征得到加强,进而区分特征的贡献度。网络模型以原始高光谱图像邻域块作为输入,无需任何预处理,是一个端对端学习的深度神经网络。在印第安松树林和帕维亚大学数据集上进行对比试验,网络模型的分类精度分别能够达到 99.43%和 99.99%,有效提高了高光谱图像分类精度。 相似文献
4.
邱晓磊 《计算机测量与控制》2021,29(2):25-29
目前提出的无人机遥感影像多尺度检测技术平均图像灰度较差,导致检测结果清晰度较低;为了解决上述问题,基于局部加权拟合算法研究了一种新的无人机遥感影像多尺度检测技术,选用最小二乘法进行多次循环计算,确定周围区域重复率,通过抽稀处理提高数据精度;根据高斯金字塔得到n阶的影像序列,利用高斯金字塔和差分尺度划分完成遥感影像的特征提取;引入加权拟合算法,构建有效影像数据集,确定影像网络模型,从而完成合并,实现影像数据的检测;实验结果表明,基于局部加权拟合算法的无人机遥感影像多尺度检测技术能够有效提高平均图像清晰度,增强检测结果的清晰度。 相似文献
5.
目的 高光谱遥感影像数据包含丰富的空间和光谱信息,但由于信号的高维特性、信息冗余、多种不确定性和地表覆盖的同物异谱及同谱异物现象,导致高光谱数据结构呈高度非线性。3D-CNN(3D convolutional neural network)能够利用高光谱遥感影像数据立方体的特性,实现光谱和空间信息融合,提取影像分类中重要的有判别力的特征。为此,提出了基于双卷积池化结构的3D-CNN高光谱遥感影像分类方法。方法 双卷积池化结构包括两个卷积层、两个BN(batch normalization)层和一个池化层,既考虑到高光谱遥感影像标签数据缺乏的问题,也考虑到高光谱影像高维特性和模型深度之间的平衡问题,模型充分利用空谱联合提供的语义信息,有利于提取小样本和高维特性的高光谱影像特征。基于双卷积池化结构的3D-CNN网络将没有经过特征处理的3D遥感影像作为输入数据,产生的深度学习分类器模型以端到端的方式训练,不需要做复杂的预处理,此外模型使用了BN和Dropout等正则化策略以避免过拟合现象。结果 实验对比了SVM(support vector machine)、SAE(stack autoencoder)以及目前主流的CNN方法,该模型在Indian Pines和Pavia University数据集上最高分别取得了99.65%和99.82%的总体分类精度,有效提高了高光谱遥感影像地物分类精度。结论 讨论了双卷积池化结构的数目、正则化策略、高光谱首层卷积的光谱采样步长、卷积核大小、相邻像素块大小和学习率等6个因素对实验结果的影响,本文提出的双卷积池化结构可以根据数据集特点进行组合复用,与其他深度学习模型相比,需要更少的参数,计算效率更高。 相似文献
6.
Nor Rizuan Mat Noor 《International journal of remote sensing》2013,34(14):5072-5104
Hyperspectral sensors acquire images in many, very narrow, contiguous spectral bands throughout the visible, near-infrared (IR), mid-IR and thermal IR portions of the spectrum, thus requiring large data storage on board the satellite and high bandwidth of the downlink transmission channel to ground stations. Image compression techniques are required to compensate for the limitations in terms of on-board storage and communication link bandwidth. In most remote-sensing applications, preservation of the original information is important and urges studies on lossless compression techniques for on-board implementation. This article first reviews hyperspectral spaceborne missions and compression techniques for hyperspectral images used on board satellites. The rest of the article investigates the suitability of the integer Karhunen–Loève transform (KLT) for lossless inter-band compression in spaceborne hyperspectral imaging payloads. Clustering and tiling strategies are employed to reduce the computational complexity of the algorithm. The integer KLT performance is evaluated through a comprehensive numerical experimentation using four airborne and four spaceborne hyperspectral datasets. In addition, an implementation of the integer KLT algorithm is ported to an embedded platform including a digital signal processor (DSP). The DSP performance results are reported and compared with the desktop implementation. The effects of clustering and tiling techniques on the compression ratio and latency are assessed for both desktop and the DSP implementation. 相似文献
7.
基于线段扫描法进行二值图像连通域分割时,对数据量较多且形状复杂的遥感二值图像,容易使邻接表存储大量的等价对信息,即浪费存储空间也不利于算法合并处理。针对这一不足,提出了一种基于线段的快速标号算法,采用“双表”实时记录和修正等价标号,很好地解决了标记冲突的问题。经模拟数据和真实遥感二值图像验证表明,该算法比传统算法在处理效率上有显著提高,具有较好的应用价值。 相似文献
8.
基于独特型免疫网络原理,提出了一种新型的分区记忆模式人工独特型网络模型,并利用其对卫星遥感数据进行了分类。该模型在结构上将免疫网络的记忆抗体划分为特异记忆抗体区和自由记忆抗体区。前者的主要功能是记忆各类别抗原的特异特征,后者为前者提供各种类型的抗体源。记忆抗体间按照亚动力学原理进行调节,实现免疫网络的寻优过程。基于上述分区,它在初次免疫响应过程中实现网络的搭建和训练,在二次免疫响应过程中实现信息提取。最后利用该模型对ETM数据进行地物分类,并与传统分类方法进行对比。结果表明:该模型的总分类精度和Kappa系数分别是92.6%和0.91,优于传统分类方法。 相似文献
9.
目的 场景分类是遥感领域一项重要的研究课题,但大都面向高分辨率遥感影像。高分辨率影像光谱信息少,故场景鉴别能力受限。而高光谱影像包含更丰富的光谱信息,具有强大的地物鉴别能力,但目前仍缺少针对场景级图像分类的高光谱数据集。为了给高光谱场景理解提供数据支撑,本文构建了面向场景分类的高光谱遥感图像数据集(hyperspectral remote sensing dataset for scene classification,HSRS-SC)。方法 HSRS-SC来自黑河生态水文遥感试验航空数据,是目前已知最大的高光谱场景分类数据集,经由定标系数校正、大气校正等处理形成。HSRS-SC分为5个类别,共1 385幅图像,且空间分辨率较高(1 m),波长范围广(380~1 050 nm),同时蕴含地物丰富的空间和光谱信息。结果 为提供基准结果,使用AlexNet、VGGNet-16、GoogLeNet在3种方案下组织实验。方案1仅利用可见光波段提取场景特征。方案2和方案3分别以加和、级联的形式融合可见光与近红外波段信息。结果表明有效利用高光谱影像不同波段信息有利于提高分类性能,最高分类精度达到93.20%。为进一步探索高光谱场景的优势,开展了图像全谱段场景分类实验。在两种训练样本下,高光谱场景相比RGB图像均取得较高的精度优势。结论 HSRS-SC可以反映详实的地物信息,能够为场景语义理解提供良好的数据支持。本文仅利用可见光和近红外部分波段信息,高光谱场景丰富的光谱信息尚未得到充分挖掘。后续可在HSRS-SC开展高光谱场景特征学习及分类研究。 相似文献
10.
在Bagging支持向量机(SVM)的基础上,将动态分类器集选择技术用于SVM的集成学习,研究了SVM动态集成在高光谱遥感图像分类中的应用。结合高光谱数据特性,通过随机选取特征子空间和反馈学习改进了Bagging SVM方法;通过引进加性复合距离改善了K近邻局部空间的计算方法;通过将错分的训练样本添加到验证集增强了验证集样本的代表性。实验结果表明,与单个优化的SVM和其他常见的SVM集成方法相比,改进后的SVM动态集成分类精度最高,能有效地提高高光谱遥感图像的分类精度。 相似文献
11.
近年来,高光谱遥感图像的分割作为地物识别和异常目标探测等应用的基础工作而受到重视,而高光谱遥感图像的海量数据和复杂结构使其分割技术成为一项挑战性的工作.在对海岸带高光谱遥感图像的光谱特性进行分析的基础上,提出一种基于光谱特性的海岸带水、陆区域分割的偏微分方程活动轮廓模型:首先以高光谱海岸带图像的海域像元光谱信息为参照点,构建海岸带高光谱图像的能量偏差矩阵;在此基础上建立适应该能量偏差矩阵的水、陆区域分割的活动轮廓模型.模型通过引入基于梯度的边缘引导函数,提升了对水、陆区域边缘的捕捉能力和抗噪声干扰能力.实验结果表明,与传统活动轮廓模型相比,本文模型不仅能够保证水、陆区域分割的精度,而且具有更快的计算速度. 相似文献
12.
13.
Jiaojiao Li Qian Du Yunsong Li 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2016,20(12):4753-4759
A very simple radial basis function neural network (RBFNN) is investigated for hyperspectral remote sensing image classification. Its training can be analytically solved with a closed-form equation, and no parameter needs to be manually tuned. Its computational cost is much lower than the popular support vector machine (SVM). Surprisingly, such an RBFNN can achieve the performance that is similar to or even better than the SVM. By incorporating a simple spatial averaging filter or a Gaussian lowpass filter with negligible additional computational cost, classification accuracy can be further improved. Considering the large matrix inversion operation in the RBFNN when the number of training samples being very large, we also propose a parallel processing method to reduce computing time in matrix inversion. 相似文献
14.
遥感图像分类是遥感领域研究的热点问题之一。结合量子粒子群优化(QPSO)算法和多样性变异的机制提出了一种新的高光谱遥感图像分类算法。在遥感图像分类过程中,采用无监督分类,图像中每个像素点到聚类中心的高斯距离作为分类标准,使用QPSO算法进行聚类中心的优化,在聚类过程中使用多样性变异机制防止QPSO算法早熟收敛,使分类结果达到最优化。在遥感图像上所做的实验表明:此分类算法具有较好的搜索速度和收敛精度,能有效寻找和优化最佳聚类中心,是一种有效、可行的遥感图像分类方法。 相似文献
15.
高光谱图像各波段图像噪声分布复杂,传统去噪方法难以达到理想效果。针对这一问题,在主成分分析(PCA)的基础上,结合噪声估计和字典学习,提出一种新的高光谱去噪方法。首先,对原始高光谱数据进行主成分变换得到一组主成分图像并根据能量比重将其划分为清晰图像组和含噪图像组;然后,根据任一波段图像的信息,利用奇异值分解(SVD)对图像进行噪声估计,再将得到的噪声估计方法与K-SVD字典学习去噪算法结合,提出一种具备自适应噪声估计特性的字典学习去噪算法,并将其应用于信息量较小的含噪图像组进行去噪处理;最后,按各主成分图像对应的信息量比例进行加权融合得到最终的去噪图像。通过对模拟与实际高光谱遥感图像的实验表明,与PCA、PCA-Bish、PCA-Contourlet三种去噪方法相比,所提方法去噪后图像的峰值信噪比(PSNR)可以提升1~3 dB,且具有更多的细节信息和更好的视觉效果。 相似文献
16.
Cong Fan Lizhe Wang Peng Liu Ke Lu Dingsheng Liu 《Multimedia Tools and Applications》2016,75(19):12201-12225
In the traditional reconstruction algorithm for compressed sensing, we use the measurement matrix and the corresponding observed image to recover the target image. In the application of remote sensing, there are many multi-source and multi-temporal reference images that have similar information to that of the target image. In this paper, we propose an algorithm to reconstruct the target image with information from multi-source and multi-temporal reference images to improve the image reconstruction accuracy, in other words, to improve the degree of similarity between the reconstructed image and the target image. The basic principle of our method is to construct a penalty term with the similarity of the target sparse coefficient and the reference sparse coefficient to constrain the reconstruction process. The experimental results demonstrate the effectiveness of our method. 相似文献
17.
针对图像处理领域中遥感图像的配准问题,提出一种基于图像局部特征的快速、自动配准方法。该方法选取具有良好尺度、旋转不变性以及精确特征点定位能力的SIFT局部特征,使用其特征向量间的欧氏距离作为相似性度量进行特征点匹配,并依据仿射变换误差准则去除奇异匹配特征点对,采用仿射变换的几何模型,实现了遥感图像的快速自动配准。实验结果表明,方法是高效、精确以及稳定的。 相似文献
18.
《微型机与应用》2019,(6):46-51
高光谱遥感影像数据具有多样化的光谱信息和空间信息,然而传统的高光谱影像分类只是针对目标的光谱特征进行处理。基于三维空间滤波操作可以作为一种简单高效的提取高光谱影像光谱和空间特征的方式,基于此提出一种改进的三维卷积神经网络框架以实现更加准确的高光谱遥感影像分类。利用高光谱遥感影像数据立方体有效地提取光谱-空间组合特征,而不依赖于任何预处理或后期处理。另外,与其他传统的基于深度学习的方法相比,该方法去除了池化层,从而达到所需参数更少,模型规模更小,更容易训练的效果。将该方法与其他基于深度学习的高光谱遥感影像分类方法进行了比较,并使用两个真实场景的高光谱遥感影像数据集作为测试。实验结果表明,该方法在地物分类准确度方面较传统的基于深度学习的高光谱遥感影像分类方法取得了更好的分类效果。 相似文献
19.
三峡库区属于南方高植被覆盖区域,岩石上部覆盖着较厚的土壤和茂密的植被,因此岩性分析比较困难,尚无成熟的方法可循。针对三峡库区这一地形复杂、地质灾害频繁、土壤植被发育的地区进行遥感岩性分析;采用面向对象(像素集团)的思想,构造光谱、纹理、植被覆盖三类指标集。通过将遥感影像与地质图叠加,采用决策树C5.0算法,挖掘出三峡库区嘉陵江组二段T1j2,嘉陵江组三段T1j3,巴东组一段T2b1,巴东组二段T2b2等地层的岩性分类规则,从而为三峡库区岩性的智能分类和解译提供重要的信息和先验知识。 相似文献
20.
In this paper, a remote sensing image segmentation procedure that utilizes a single point iterative weighted fuzzy C-means clustering algorithm is proposed based upon the prior information. This method can solve the fuzzy C-means algorithm's problem that the clustering quality is greatly affected by the data distributing and the stochastic initializing the centrals of clustering. After the probability statistics of original data, the weights of data attribute are designed to adjust original samples to the uniform distribution, and added in the process of cyclic iteration, which could be suitable for the character of fuzzy C-means algorithm so as to improve the precision. Furthermore, appropriate initial clustering centers adjacent to the actual final clustering centers can be found by the proposed single point adjustment method, which could promote the convergence speed of the overall iterative process and drastically reduce the calculation time. Otherwise, the modified algorithm is updated from multidimensional data analysis to color images clustering. Moreover, with the comparison experiments of the UCI data sets, public Berkeley segmentation dataset and the actual remote sensing data, the real validity of proposed algorithm is proved. 相似文献