首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Cloud computing is a popular and widely adopted computing platform for the execution of scientific workflows as it provides flexible infrastructure and offers access to collection of autonomous heterogeneous resources. Effective scheduling of computationally complex workflows which contain many interconnected tasks is a complex problem and becomes more challenging in cloud environment. Optimal solutions can be obtained by considering not only the heterogeneity of computation costs involved, but also by taking into account the communication costs among the tasks in a way that schedule length of the application is reduced. In this paper, we propose a list scheduling heuristic, namely minimal optimistic processing time (MOPT), with optimized duplication approach. The additional feature is introduced for the entry task and is applied only in scenarios in which duplication is more practical and effective. The prioritization phase of the proposed work is based on an optimistic processing time matrix that is used for ranking of the tasks. The algorithm has same time complexity as state-of-the-art existing algorithms, but notable improvements are acquired in terms of makespan and other performance evaluation parameters. Extensive experimental analysis of the proposed algorithm is carried out using synthesized graphs and graphs from the real-world applications. The results prove that MOPT achieves quality schedules with reduced makespans. As communication cost among the tasks grows higher, performance of the proposed algorithm becomes more effective, thus providing the evidence that the MOPT algorithm is well-suited for communication-intensive applications.

  相似文献   

2.
Real-time systems cover a wide application domain. This paper presents an efficient heuristic algorithm for enforcing the schedulability of aperiodic hard real-time tasks arriving simultaneously with precedence constraints and individual deadlines. The proposed co-synthesis algorithm integrates partitioning and non-preemptive scheduling. Reconfigurable FPGAs are incrementally added when schedulability suffers in a uniprocessor system. Initially, a schedule that minimizes the maximum lateness and satisfies the precedence constraints is made. If individual timing constraints are not met in this schedule, some tasks are selected and transferred to dynamically reconfigured FPGAs. The proposed algorithm was implemented and tested with a large number of task graphs with task size as high as 700 nodes. The algorithm could not only achieve schedulability but also could reduce the total completion time of the task graph. Moreover, incremental addition of reconfigurable FPGAs yielded a cost effective solution.  相似文献   

3.
List scheduling with duplication for heterogeneous computing systems   总被引:2,自引:0,他引:2  
Effective task scheduling is essential for obtaining high performance in heterogeneous computing systems (HCS). However, finding an effective task schedule in HCS, requires the consideration of the heterogeneity of computation and communication. To solve this problem, we present a list scheduling algorithm, called Heterogeneous Earliest Finish with Duplicator (HEFD). As task priority is a key attribute for list scheduling algorithm, this paper presents a new approach for computing their priority which considers the performance difference in target HCS using variance. Another novel idea proposed in this paper is to try to duplicate all parent tasks and get an optimal scheduling solution. The comparison study, based on both randomly generated graphs and the graphs of some real applications, shows that our scheduling algorithm HEFD significantly surpasses other three well-known algorithms.  相似文献   

4.
针对单片现场可编程门阵列(FPGA)在处理高速网络中海量数据时存在效率低下的问题,结合多处理器的双优先级调度算法,在所构建的多片FPGA并行处理的高速数据采集和处理模型上,提出一种基于多片FPGA的双优先级动态调度算法,并对处于低优先级段的强实时周期任务提出一种最早截止期临界松弛调度(EDCL)算法。根据任务的松弛度确定任务的优先级,若提升时间到达时仍未完成,则将其提升到高优先级段; 对软实时周期任务,设置在中优先级段,通过延长当前任务截止期至动态模糊阈值进行调度。实验结果表明,该算法能很好地调度强实时周期任务,保证重要任务的优先执行,并能降低由于抢占造成的软实时周期任务错失率。  相似文献   

5.
The worth of completing parallel tasks is modeled using utility functions, which monotonically-decrease with time and represent the importance and urgency of a task. These functions define the utility earned by a task at the time of its completion. The performance of a computing system is measured as the total utility earned by all completed tasks over some interval of time (e.g., 24 h). We have designed, analyzed, and compared the performance of a set of heuristic techniques to maximize system performance when scheduling dynamically arriving parallel tasks onto a high performance computing (HPC) system that is oversubscribed and energy constrained. We consider six utility-aware heuristics and four existing heuristics for comparison. A new concept of temporary place-holders is compared with scheduling using permanent reservations. We also present a novel energy filtering technique that constrains the maximum energy-per-resource used by each task. We conducted a simulation study to evaluate the performance of these heuristics and techniques in multiple energy-constrained oversubscribed HPC environments. We conduct an experiment with a subset of the heuristics on a physical testbed system for one scheduling scenario. We demonstrate that our proposed utility-aware resource management heuristics are able to significantly outperform existing techniques.  相似文献   

6.
HPC industry demands more computing units on FPGAs, to enhance the performance by using task/data parallelism. FPGAs can provide its ultimate performance on certain kernels by customizing the hardware for the applications. However, applications are getting more complex, with multiple kernels and complex data arrangements, generating overhead while scheduling/managing system resources. Due to this reason all classes of multi threaded machines–minicomputer to supercomputer–require to have efficient hardware scheduler and memory manager that improves the effective bandwidth and latency of the DRAM main memory. This architecture could be a very competitive choice for supercomputing systems that meets the demand of parallelism for HPC benchmarks. In this article, we proposed a Programmable Memory System and Scheduler (PMSS), which provides high speed complex data access pattern to the multi threaded architecture. This proposed PMSS system is implemented and tested on a Xilinx ML505 evaluation FPGA board. The performance of the system is compared with a microprocessor based system that has been integrated with the Xilkernel operating system. Results show that the modified PMSS based multi-accelerator system consumes 50% less hardware resources, 32% less on-chip power and achieves approximately a 19x speedup compared to the MicroBlaze based system.  相似文献   

7.

In the past decade, heterogeneous multicore architectures with support for Single Instruction Multiple Thread (SIMT) style computing have become the standard platform of choice for scheduling HPC applications. Here, applications are typically modelled as a set of data-parallel tasks with dependencies represented in the form of a directed acyclic graph (DAG). The relevant execution time information for each constituent task in the DAG is known beforehand and is leveraged by scheduling algorithms (List or Cluster based) to ascertain near-optimal schedules at runtime. However, given an online setting, where applications are submitted by multiple users and the types of applications are not restrictive, the chances of knowing execution time information for every program are highly unlikely. In this context, we propose a class of intelligent algorithms for heterogeneous CPU-GPU platforms that leverage static analysis-assisted machine learning techniques for deciding how device assignments should be made at runtime, thus bypassing the requirement for expensive offline profiling passes. We formalize relevant task-level ranking metrics and discuss how existing scheduling techniques can be adapted for our proposed class of algorithms. We also devise an online cluster scheduling algorithm that supports dynamic task arrival by determining in any given scheduling epoch, mapping decisions for a subset of tasks in a DAG. We perform a detailed comparative analysis between our proposed cluster and list scheduling heuristics via extensive simulation experiments using a variety of heterogeneous multicore platform configurations and observe performance speedups in the range of 1.1–1.5× for cluster scheduling over that of list scheduling.

  相似文献   

8.
任务调度在云计算环境中发挥着重要作用。提出一种基于Kriging代理模型的动态云任务调度方法。通过对云任务在不同资源组合下的性能表现进行Kriging代理模型建模并优化,从而得到对应于该云任务的最优资源分配方案;利用云平台的API,可动态对该云任务实施资源调度。基于OpenStack开源云平台,对两个工程计算应用进行了任务调度性能测试,结果表明该方法可有效动态调整云任务中的资源配给,按需按优对平台中的云任务进行资源调度。  相似文献   

9.
This paper presents a hybrid scheduling methodology for task graphs to multiprocessor embedded systems. The proposed methodology is designed for task graphs which are dynamic in nature due to the presence of conditional tasks as well as tasks whose execution times are unpredictable but bounded. We have presented the methodology as a three phase strategy in which task nodes are mapped to the processors in the first (static mapping) phase. In the second (selective duplication) phase some critical nodes are identified and duplicated for possible rescheduling at run-time depending on the code memory constraints of the processors. The third (online) phase is a run-time scheduling algorithm that performs list scheduling based on actual dynamics of the schedule up to the current time. We show that this technique provides better schedule length (up to 20%) compared to previous techniques which are predominantly static in nature with low overhead and comparable in complexity with existing online techniques. The effects of model parameters like number of processors, memory and various task graph parameters on performance are investigated in this paper.  相似文献   

10.
目前已有的Fork-Join任务图的调度算法大多假定处理机为同构的,而没有考虑实际应用中处理机的异构性以及节省处理机的问题,导致算法在具体应用中效率较低.因此,对Fork-Join任务图的调度问题进行研究,提出了一个基于异构环境的贪心调度算法,该算法具有高的加速比和总体效率,其时间复杂度为O(v~2),其中,v表示任务集中任务的个数.实验结果表明,相比其它算法,该算法具有较短的调度长度、较短的完成时间,使用的处理机数较少,具有更强的实用性.  相似文献   

11.
一种实时异构系统的集成动态调度算法   总被引:10,自引:0,他引:10  
乔颖  邹冰  方亭  王宏安  戴国忠 《软件学报》2002,13(12):2251-2258
提出了一种实时异构系统的集成动态调度算法.该算法通过一个新的任务分配策略以及软实时任务的服务质量QoS(quality of service)降级策略,不仅以统一方式完成了对实时异构系统中硬、软实时任务的集成动态调度,而且提高了算法的调度成功率.同时,还进行了大量的模拟研究.这些模拟以传统的近视算法为基准,将其应用在实时异构系统集成动态调度时的调度成功率与新算法进行比较,模拟结果表明,在多种任务参数取值下,新算法的调度成功率均高于传统的近视算法.  相似文献   

12.
Programming models for distributed systems often construct a task graph for the program to be executed on a distributed system of processors. While the topology of the task graph can be constructed from the program structure, often the task execution times and data transfer costs between tasks depend on the input data, or more specifically, on the particular problem instance. Though this indicates that the optimal schedule of a task graph cannot be determined until the input data is available, it is possible to estimate theworst caseprocessor requirement for the optimal schedule of a program solely from the topology of its task graph. In this paper, we study the problem of estimating worst case processor requirements for scheduling (with cloning) layered task graphs based on their topology. We show that computing an accurate processor bound for layered graphs is NP hard (even for two layers) and present a polynomial time algorithm which computes an upper bound on the processor requirement. We show that the algorithm provides tight bounds for several common classes of layered task graphs.  相似文献   

13.
郭雅琼  宋建新 《计算机科学》2015,42(Z11):413-416
云计算的平台优势使得它在多媒体应用中得到广泛使用。由于多媒体服务的多样性和异构性,如何将多媒体任务有效地调度至虚拟机进行处理成为当前多媒体应用的研究重点。对此,研究了云中多媒体最优任务调度问题,首先引入有向无环图来模拟任务中的优先级及任务之间的依赖性,分别对串行、并行、混合结构任务调度模型进行任务调度研究,根据有限资源成本将关键路径中任务节点融合,提出一种实用的启发式近似最优调度方法。实验结果表明,所提调度方法能够以最短的执行时间在有限的资源成本下完成最优的任务分配。  相似文献   

14.

In cloud computing, resources are dynamically provisioned and delivered to users in a transparent manner automatically on-demand. Task execution failure is no longer accidental but a common characteristic of cloud computing environment. In recent times, a number of intelligent scheduling techniques have been used to address task scheduling issues in cloud without much attention to fault tolerance. In this research article, we proposed a dynamic clustering league championship algorithm (DCLCA) scheduling technique for fault tolerance awareness to address cloud task execution which would reflect on the current available resources and reduce the untimely failure of autonomous tasks. Experimental results show that our proposed technique produces remarkable fault reduction in task failure as measured in terms of failure rate. It also shows that the DCLCA outperformed the MTCT, MAXMIN, ant colony optimization and genetic algorithm-based NSGA-II by producing lower makespan with improvement of 57.8, 53.6, 24.3 and 13.4 % in the first scenario and 60.0, 38.9, 31.5 and 31.2 % in the second scenario, respectively. Considering the experimental results, DCLCA provides better quality fault tolerance aware scheduling that will help to improve the overall performance of the cloud environment.

  相似文献   

15.
针对异构集群下高效节能的任务调度算法进行了研究, 提出了一种基于复制的任务调度算法, 在任务初始分配的基础上, 分别从能源感知和性能—能源平衡两个角度考虑任务的复制。建立了由计算和通信造成的能源消耗的数学模型, 并进行了大量的实验。实验结果表明, 与已有的BEATA算法相比, 该算法能明显地减少异构集群处理并行应用的调度长度和能耗。分析结果发现, 任务复制的方法在减少调度长度的同时会增加相应的能耗, 能同比优化调度长度和能耗的任务调度方法是今后的研究方向。  相似文献   

16.
As the cost-driven public cloud services emerge, budget constraint is one of the primary design issues in large-scale scientific applications executed on heterogeneous cloud computing systems. Minimizing the schedule length while satisfying the budget constraint of an application is one of the most important quality of service requirements for cloud providers. A directed acyclic graph (DAG) can be used to describe an application consisted of multiple tasks with precedence constrains. Previous DAG scheduling methods tried to presuppose the minimum cost assignment for each task to minimize the schedule length of budget constrained applications on heterogeneous cloud computing systems. However, our analysis revealed that the preassignment of tasks with the minimum cost does not necessarily lead to the minimization of the schedule length. In this study, we propose an efficient algorithm of minimizing the schedule length using the budget level (MSLBL) to select processors for satisfying the budget constraint and minimizing the schedule length of an application. Such problem is decomposed into two sub-problems, namely, satisfying the budget constraint and minimizing the schedule length. The first sub-problem is solved by transferring the budget constraint of the application to that of each task, and the second sub-problem is solved by heuristically scheduling each task with low-time complexity. Experimental results on several real parallel applications validate that the proposed MSLBL algorithm can obtain shorter schedule lengths while satisfying the budget constraint of an application than existing methods in various situations.  相似文献   

17.
Network processors are designed to handle the inherently parallel nature of network processing applications. However, partitioning and scheduling of application tasks and data allocation to reduce memory contention remain as major challenges in realizing the full performance potential of a given network processor. The large variety of processor architectures in use and the increasing complexity of network applications further aggravate the problem. This work proposes a novel framework, called FEADS, for automating the task of application partitioning and scheduling for network processors. FEADS uses the simulated annealing approach to perform design space exploration of application mapping onto processor resources. Further, it uses cyclic and r-periodic scheduling to achieve higher throughput schedules. To evaluate dynamic performance metrics such as throughput and resource utilization under realistic workloads, FEADS automatically generates a Petri net (PN) which models the application, architectural resources, mapping and the constructed schedule and their interaction. The throughput obtained by schedules constructed by FEADS is comparable to that obtained by manual scheduling for linear task flow graphs; for more complicated task graphs, FEADS’ schedules have a throughput which is upto 2.5 times higher compared to the manual schedules. Further, static scheduling of tasks results in an increase in throughput by upto 30% compared to an implementation of the same mapping without task scheduling.  相似文献   

18.
本文从软件复用的角度对元计算环境进行了研究,提出了一个基于构件技术的元计算环境框架MefBC,并重点给出了基于此框架任务的分配与调度.在一般的元计算中,任务结点在其所有前驱结点执行结束后才能进行分配调度.本文则采用了动态调度方案,任务结点是根据其前驱结点的执行情况来分配调度到下一个计算结点的,并且任务结点的分配调度在其一前驱结点执行完毕时就开始,以实现计算跟通信的最大重叠,提高系统效率.  相似文献   

19.
任务调度问题是并行分布式计算中的挑战性问题之一。大多数实际的调度算法是启发式的因而常常具有改进的余地。针对Out-Tree任务图这一基本结构提出一个基于任务复制的启发式调度算法,该算法在确保最短调度长度的同时,注重处理器的负载平衡,以达到节约处理器的目的。比较性实验的结果表明,该算法确保了最短调度长度且使用的处理器最少。因而,该算法提高了系统的利用率,避免消耗过多的资源,实际应用性更好。  相似文献   

20.
针对任务具有特征参数多和特征参数不确定性的特点,提出了一种基于模糊理论的任务调度算法。利用模糊集合来描述任务的不确定性特征;使用多层模糊综合评判和最大隶属度原理来综合考虑任务的多个特征参数并确定任务的优先级;采用动态构建多层评判模型的调度策略来减小任务优先级评判的失效率。仿真表明,该算法提高了任务调度的成功率,降低了任务截止期的错失率和任务优先级评判的失效率。该方法可应用于优先等级有限的实时系统任务动态调度中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号