首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corticosteroids influence neuron activity in the hippocampus through the activation of mineralocorticoid and glucocorticoid receptors. For example, corticosteroids modulate the responses elicited by the activation of several different neurotransmitter receptors on hippocampal pyramidal cells. However, the effects of corticosteroids on the serotonin (5-HT) receptors systems in subfield CA3 are not completely known. Therefore, we used single-electrode voltage clamp techniques to examine the actions of chronic corticosteroid treatment on the 5-HT1A receptor-effector pathway in rat hippocampal subfield CA3 pyramidal cells. Activation of the 5-HT1A receptor increases the conductance of an inward rectifying potassium channel, increasing outward current. The treatment groups used in this investigation were: adrenalectomy, selective mineralcorticoid receptor activation with aldosterone, mineralcorticoid receptor and glucocorticoid receptor activation with high levels of corticosterone and SHAM. Corticosteroids altered the characteristics of the 5-HT concentration-response curve for the 5-HT1A receptor. The effective concentration at 50% of maximum value was smaller in cells from the adrenalectomy treatment group compared to the other treatment groups. The maximum response was smaller in cells from the high corticosterone treatment group compared to SHAM and adrenalectomy treatment group animals. G protein function was also altered by corticosterone treatment. Less current was elicited by guanosine 5'-0-13-thiotriphosphate in cells from the high corticosterone treatment group compared to the other treatment groups and in cells from the SHAM treatment group compared to adrenalectomy treatment group animals. Corticosteroid treatment did not alter the current-voltage relationship, the conductance or the reversal potential of the potassium current linked to the 5-HT1A receptor. We conclude that corticosteroids alter the 5-HT1A receptor-mediated-response in hippocampal subfield CA3 neurons at site(s) downstream of the receptor.  相似文献   

2.
1. Intracellular recordings were obtained from cells in the regions CA1, CA3 and the dentate gyrus (DG) of rat hippocampal slices. 2. Topical application of 5-HT induced a 2-10 mV hyperpolarization in all cells tested. 3. The hyperpolarization was accompanied by a marked reduction in input resistance in CA1 and DG cells, but by a much smaller resistance change in CA3 cells. 4. These effects of 5-HT were not abolished by tetrodotoxin. 5. It is suggested that 5-HT causes an increase in K+ conductance in regions CA1 and DG and that this results in hyperpolarization. A different mechanism might be activated by 5-HT in cells of the CA3 region.  相似文献   

3.
The present study provides the first autoradiographic evidence of age-dependent regional changes in the density of serotonin (5-HT) transporters in offspring following prenatal exposure to fluoxetine. Pregnant rats received either saline or fluoxetine (10 mg/kg, s.c.) daily from gestational day 13 through 20. The density of [3H]citalopram-labeled 5-HT transporters was determined in forebrain regions and in midbrain raphe nuclei of prepubescent and adult male offspring. Brain regions representing integral components of the limbic system were particularly sensitive to the prenatal treatment. For example, prenatal fluoxetine exposure significantly altered the density of 5-HT transporters in subregions of the hypothalamus (dorsomedial nucleus, -21%; lateral hypothalamus, +21%), hippocampus (CA2, +47%; CA3, +38%), and amygdala (basolateral nucleus, +32%; medial nucleus, +44%) in prepubescent offspring. However, 5-HT transporter density in the dorsal and median raphe was unaltered in this same group of offspring. In adult offspring, 5-HT transporter densities, in all brain regions examined, were not significantly altered by prenatal exposure to fluoxetine. The present study also identifies significant age-related differences in 5-HT transporter densities between prepubescent and adult control offspring. For example, in adult control offspring, densities of 5-HT transporters were significantly greater in the cingulate cortex (+33%), basolateral amygdala (+58%), and CA1 area of the hippocampus (+78%); but significantly lower in the temporal cortex (-65%) and median raphe (-25%). The age-dependent and site-specific alterations in the density of 5-HT transporters suggests that either 5-HT innervation and/or 5-HT neuron function in various forebrain regions may be altered by prenatal exposure to fluoxetine.  相似文献   

4.
1. Cerebral ischemia of 5 min duration was induced in unanesthetized gerbils by bilateral occlusion of the carotid arteries. 2. The extent of cerebral damage was assessed by the elevation of motor activity in comparison with pre-ischemic levels and by a histological assessment of the extent of neuronal degeneration of the CA1 area of the hippocampus. 3. The GABA transport inhibitor CI-966 (10 mg/kg i.p.) was tested for cerebroprotective activity in a gerbil stroke model. CI-966 reduced the extent of stroke injury as assessed by locomotor activity and measurement of hippocampal CA1 pyramidal cell injury. 4. It is proposed that enhancement of extracellular GABA levels during ischemia accounts for the cerebroprotective actions of CI-966.  相似文献   

5.
Glutamate receptor-mediated responses were investigated by using a whole-cell recording and an intracellular calcium ion ([Ca2+]i) imaging in gerbil postischemic hippocampal slices prepared at 1, 3, 6, 9, 12, and 24 hours after 5-minute ischemia. Bath application of N-methyl-D-aspartic acid (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate showed that NMDA-, AMPA- and kainate-induced currents were enhanced in postischemic CA1 pyramidal neurons at 1 to 12 hours after 5-minute ischemia. NMDA and non-NMDA receptor-mediated excitatory postsynaptic currents (EPSC) were examined in postischemic CA1 pyramidal neurons at 3 hours after 5-minute ischemia to confirm whether synaptic responses are enhanced in the postischemic CA1 pyramidal neurons. The amplitudes of NMDA- and non-NMDA-receptor-mediated EPSC were enhanced in the postischemic CA1 pyramidal neurons. NMDA-, AMPA-, and kainate-induced [Ca2+]i elevations were also examined to determine whether the enhancement of currents is accompanied by the enhancement of [Ca2+]i elevation. The enhancements of NMDA-, AMPA-, and kainate-induced [Ca2+]i elevations were shown in the postischemic CA1. These results indicate that NMDA and non-NMDA receptor-mediated responses are persistently enhanced in the CA1 pyramidal neurons 1 to 12 hours after transient ischemia, and suggest that the enhancement of glutamate receptor-mediated responses may act as one of crucial factors in the pathologic mechanism responsible for leading postischemic CA1 pyramidal neurons to irreversible neuronal injury.  相似文献   

6.
Recent behavioral studies indicate that conditioned fear response to contextual stimuli is reduced effectively by anxiolytic 5-hydroxytryptame (5-HT)1A agonists. Since the hippocampus seems to play an essential role in associative fear memories evoked by context, it is important to assess the effect of 5-HT1A agonists on pyramidal cell activity in the hippocampus. We examined the effects of 5-HT1A agonists on the spontaneous firing rate of hippocampal CA1 pyramidal neurons in unanesthetized, unrestrained rats. Systemic administration of selective 5-HT1A agonists, 8-hydroxy-2-(di-n-propylamino)tetralin, buspirone, ipsapirone, and flesinoxan produced a dose-dependent inhibition of neuronal activity. Putative 5-HT1A antagonists NAN-190 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine and (-)-pindolol did not change neuronal activity of CA1 pyramidal neurons. The suppression of neuronal activity by buspirone was antagonized by NAN-190 but not by (-)-pindolol. Lack of antagonistic activity of (-)-pindolol for the suppression of pyramidal neurons via a postsynaptic mechanism is consistent with the results of recent electrophysiological experiments in anesthetized rats. Pretreatment with parachlorphenylalanine did not change the spontaneous firing rates of hippocampal CA1 pyramidal neurons or abolish the suppressant effects of buspirone on these neurons. Taken together, the present results strongly suggest that suppression of the hippocampal CA1 pyramidal neuronal activity by anxiolytic 5-HT1A agonists in awake rats is mediated by postsynaptic 5-HT1A receptors located on pyramidal neurons.  相似文献   

7.
Hippocampal interneurons are excited via serotonin-gated ion channels. J. Neurophysiol. 78: 2493-2502, 1997. Serotonergic neurons of the median raphe nucleus heavily innervate hippocampal GABAergic interneurons located in stratum radiatum of area CA1, suggesting that this strong subcortical projection may modulate interneuron excitability. Using whole cell patch-clamp recording from interneurons in brain slices, we tested the effects of serotonin (5-HT) on the physiological properties of these interneurons. Serotonin produces a rapid inward current that persists when synaptic transmission is blocked by tetrodotoxin and cobalt, and is unaffected by ionotropic glutamate and gamma-aminobutyric acid (GABA) receptor antagonists. The 5-HT-induced current was independent of G-protein activation. Pharmacological evidence indicates that 5-HT directly excites these interneurons through activation of 5-HT3 receptors. At membrane potentials negative to -55 mV, the current-voltage (I-V) relationship of the 5-HT current displays a region of negative slope conductance. Therefore the response of interneurons to 5-HT strongly depends on membrane potential and increases greatly as cells are depolarized. Removal of extracellular calcium, but not magnesium, increases the amplitude of 5-HT-induced currents and removes the region of negative slope conductance, thereby linearizing the I-V relationship. The axons of 5-HT-responsive interneurons ramify widely within CA1; some of these interneurons also project to and arborize extensively in the dentate gyrus. The organization of these inhibitory connections strongly suggests that these cells regulate excitability of both CA1 pyramidal cells and dentate granule cells. As our results indicate that 5-HT may mediate fast excitatory synaptic transmission onto these interneurons, serotonergic inputs can simultaneously modulate the output of both hippocampus and dentate gyrus.  相似文献   

8.
The effects of chronic maternal administration of ethanol on nitric oxide synthase (NOS) activity and the numbers of NOS containing neurons, and CA1 and CA3 pyramidal neurons in the hippocampus of the near term fetal guinea pig at gestational day (GD) 62 were investigated. Pregnant guinea pigs received oral administration of 4 g ethanol/kg maternal body weight (n = 5), isocaloric sucrose/pair feeding (n = 5) or water (n = 5), or no treatment (NT; n = 5) from GD 2 to GD 61. NOS activity in the 25,000 x g supernatant of hippocampal homogenate was determined using a radiometric assay. The numbers of NOS containing neurons, and CA1 and CA3 pyramidal neurons were determined using NADPH diaphorase histochemistry and cresyl violet staining, respectively. The chronic ethanol regimen produced a maternal blood ethanol concentration of 193 +/- 13 mg/dl at 1 h after the second divided dose on GD 57. Chronic ethanol exposure produced fetal body, brain, and hippocampal growth restriction and decreased fetal hippocampal NOS activity compared with the isocaloric sucrose/pair feeding, water, and NT experimental groups, but did not affect the number of NOS containing and CA1 or CA3 pyramidal neurons. These data demonstrate that, in the near term fetus, chronic maternal administration of ethanol suppresses hippocampal NOS activity and consequent formation of NO, without loss of NOS containing neurons and prior to loss of CA1 pyramidal neurons that occurs in the adult.  相似文献   

9.
Intracellular recordings were performed in area CA1 pyramidal cells of rat hippocampal slices to determine the effects of certain steroids on inhibitory postsynaptic potentials/currents (IPSP/Cs) mediated by GABA(A) receptors. Following application of the steroids 5alpha-pregnan-3alpha,21-diol-20-one (5alpha-THDOC), alphaxalone and 5beta-pregnan-3alpha-ol-20-one (pregnanolone) hyperpolarizing PSPs developed into biphasic responses consisting of an early hyperpolarizing and a late depolarizing PSP sequence. Steroid-induced depolarizing PSPs could be elicited in the presence of antagonists to non-NMDA, NMDA, and GABA(B) receptors, indicating that these receptor types do not contribute significantly to the initiation of these responses. Depolarizing PSPs were completely blocked by both GABA(A) receptor antagonists bicuculline and t-butylbicyclophosphorothionat (TBPS) providing evidence for their mediation by GABA(A) receptors. The reversal potential of steroid-induced late inward PSCs, measured in single-electrode voltage clamp, was -29.9+/-5.3 mV, whereas the early outward current, which corresponded to the early hyperpolarizing component of PSPs, reversed at -68.2+/-1.5 mV. Depolarizing PSPs and late inward PSCs were sensitive to reduction of extracellular [HCO3-] and block of carbonic anhydrase by application of acetazolamide. The results suggest that certain neuroactive steroids can induce GABA(A) receptor-mediated depolarizing PSPs, which are dependent on HCO3-.  相似文献   

10.
Patch-clamp recordings of CA1 interneurons and pyramidal cells were performed in hippocampal slices from kainate- or pilocarpine-treated rat models of temporal lobe epilepsy. We report that gamma-aminobutyric acid (GABA)ergic inhibition in pyramidal neurons is still functional in temporal lobe epilepsy because: (i) the frequency of spontaneous GABAergic currents is similar to that of control and (ii) focal electrical stimulation of interneurons evokes a hyperpolarization that prevents the generation of action potentials. In paired recordings of interneurons and pyramidal cells, synchronous interictal activities were recorded. Furthermore, large network-driven GABAergic inhibitory postsynaptic currents were present in pyramidal cells during interictal discharges. The duration of these interictal discharges was increased by the GABA type A antagonist bicuculline. We conclude that GABAergic inhibition is still present and functional in these experimental models and that the principal defect of inhibition does not lie in a complete disconnection of GABAergic interneurons from their glutamatergic inputs.  相似文献   

11.
Voltage-clamped GABA(A fast) and GABA(A slow) inhibitory postsynaptic currents (IPSCs) were selectively elicited in hippocampal area CA1 pyramidal neurons. Clinically relevant concentrations of halothane (1.2 vol.%) prolonged both GABA(A fast) and GABA(A slow) IPSC decay times approximately 2.5 fold, while having little to no effect on current amplitudes or rise times. Current-voltage analysis revealed that IPSC reversal potentials (-70 to -75 mV) remained constant in the presence of halothane. Under control conditions, GABA(A slow) IPSC decay times increased linearly with membrane depolarization, and this IPSC decay time voltage dependence was not significantly altered by halothane. These results confirm the existence of separable GABA(A fast) and GABA(A slow) IPSCs in hippocampus, and further elucidate the effects of halothane on these currents.  相似文献   

12.
We have investigated the effect of 5-HT2 receptor agonist or antagonist administration on postsynaptic 5-HT1A receptor sensitivity assessed by two behavioral measures, reciprocal forepaw treading or hypothermia induced by acute injection of the 5-HT1A receptor agonist 8-OH-DPAT. The effectiveness of these drug treatments to downregulate 5-HT2A receptors was confirmed by measuring the binding of [3H]-ketanserin in cortical homogenates, because all of these drug treatments have been shown to result in the downregulation of 5-HT2A receptor sites. Acute or chronic treatment of rats with the 5-HT2 receptor antagonist mianserin, or chronic administration of the 5-HT2A receptor antagonist ketanserin, did not alter 8-OH-DPAT-induced hypothermia or forepaw treading. These data indicate that downregulation of 5-HT2A receptors is not sufficient to alter these postsynaptic 5-HT1A receptor-mediated responses. Chronic treatment of rats with the 5-HT2 receptor agonist DOI, however, resulted in the attenuation of both 5-HT1A receptor-mediated responses measured in separate experimental groups. The apparent desensitization of 5-HT1A receptors following chronic DOI treatment was not accompanied by a change in either the number or affinity of 5-HT1A receptor sites as measured by the binding of [3H]-8-OH-DPAT in hippocampal homogenates. Chronic activation of 5-HT2 receptors may be one mechanism by which the sensitivity postsynaptic 5-HT1A receptors can be regulated.  相似文献   

13.
Chronic intermittent ethanol (CIE)-treated rats exhibited a kindling-like persistent increase in withdrawal hyperexcitability. The alteration of GABA(A) receptor (GABA(A)R) function in the hippocampus was suggested as a possible mechanism underlying the hyperexcitability observed in CIE rats, because (1) GABA(A)R agonist (muscimol)-evoked 36Cl- efflux was decreased; (2) paired-pulse inhibition in the CA1 area, predominantly due to GABA(A)R-mediated recurrent inhibition, was persistently decreased; and (3) GABA(A)R subunit expression was altered in the hippocampus from CIE rats. To further characterize the functional alteration of GABA(A)R after CIE treatment, their sensitivity to acute ethanol, a steroid anesthetic (alphaxalone), and a benzodiazepine inverse agonist (DMCM; methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) were studied using either synaptically evoked GABA(A)R responses or exogenously applied muscimol-evoked responses in hippocampal slices. Bath application of ethanol (60 mM) enhanced the area of GABA(A)R-mediated inhibitory postsynaptic potentials in the hippocampal CA1 region from control and CIE rats, and this potentiation was significantly (p = 0.027) greater in CIE rats (98%) than in control rats (53%). The positive modulatory effect of alphaxalone (1 microM) on GABA(A)R-inhibitory postsynaptic potentials was not significantly different between control and CIE rats (p = 0.375), whereas alphaxalone allosterically increased [3H]flunitrazepam binding in the CA1 area only in CIE rats (by 20 to 25%, p < 0.01), but not in controls. On the other hand, the negative modulatory effect of DMCM (1 microM) on muscimol-evoked responses was significantly larger in CIE rats (p = 0.002). These results suggest that the sensitization of GABA(A)R to acute ethanol and benzodiazepine inverse agonists, and possibly neurosteroids, may underlie ethanol dependence after multiple ethanol withdrawal episodes. These altered pharmacological properties are most consistent with changes in the subunit composition in the CA1 area of this rat model of alcohol dependence.  相似文献   

14.
Fluoxetine 10 mg/kg i.p. significantly increased the extracellular concentrations of serotonin (5-HT) in the frontal cortex as assessed by in vivo microdialysis. This effect was significantly potentiated when 0.3 mg/kg s.c. WAY-100635, a 5-HT1A receptor antagonist, was administered 30 min before. WAY-100635 by itself had no effect on extracellular 5-HT. Twenty-four hours after chronic fluoxetine schedule (10 mg/kg/day i.p. x 14 days), basal extracellular 5-HT concentrations in the frontal cortex were higher than those of animals that had received the vehicle chronically. At 24 h after the last dose, a challenge dose of fluoxetine (10 mg/kg i.p.) raised extracellular 5-HT similarly in chronically vehicle or fluoxetine treated rats. At this same interval 25 micrograms/kg s.c. 8-OH-DPAT, a 5-HT1A receptor agonist, significantly reduced extracellular 5-HT only in the frontal cortex of rats treated chronically with the vehicle. Examining basal extracellular 5-HT, the effect of a challenge dose of fluoxetine and the effect of 25 micrograms/kg 8-OH-DPAT after 96 h washout, no differences were found between chronically fluoxetine and vehicle-treated rats. The results confirm that the ability of fluoxetine to stimulate 5-HT1A autoreceptors through an increase of endogenous 5-HT attenuates its effect on cortical dialysate 5-HT. Chronic fluoxetine increased the basal concentrations of extracellular 5-HT only when a substantial amount of its metabolite was present in the brain and during the desensitization of presynaptic 5-HT1A autoreceptors (24 h after the last dose). These effects, in fact, disappeared after 96 h washout. The continuous presence of the drug may, therefore, be necessary to maintain extracellular 5-HT at concentrations high enough to produce a therapeutic effect.  相似文献   

15.
This report further characterizes the intermediate metabolic effects of the psychotropic amphetamine derivative, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"), on the activity of second messenger-dependent kinases. Previous work has demonstrated that two injections of MDMA (20 mg/kg) elicits a prolonged translocation of the calcium and phospholipid-dependent enzyme, protein kinase C (PKC) in rats. However, because MDMA has actions at the 5-HT transporter and 5-HT2A/2C receptors, our experiments were directed at uncovering which of these many sites may be involved in this second messenger dependent response. A single injection of MDMA produced a time- and dose-dependent increase in the density of cortical and hippocampal PKC (as measured by 3H-phorbol 12,13-dibutyrate (PDBu) binding sites. MDMA-mediated PKC translocation was long-lasting and remained above control (saline-treated rats) for up to 24 h after injection. This effect was mimicked by another substituted amphetamine, p-chloroamphetamine (pCA), but with a temporal-response curve that was to the left of MDMA's. However, pure uptake inhibitors like fluoxetine, cocaine, and the selective 5-HT2A/2C agonist, DOB, were unable to produce a long-lasting translocation of PKC binding sites in rat cortex. Fluoxetine, a selective serotonin uptake inhibitor (SSRI) and ketanserin a 5-HT2A antagonist, attenuated PKC translocation by MDMA with differing efficacies; however, both compounds completely prevented the loss of 5-HT uptake sties after multiple doses of MDMA. These results suggest that MDMA increases PKC translocation by two interrelated mechanisms that involve 5-HT2A/2C receptors and the 5-HT transporter. This pathway appears to include: (1) the drug binding to the 5-HT transporter, (2) the release of cytosolic 5-HT stores into the extracellular space, and (3) the activation of post-synaptic 5-HT2A/2C receptors linked to G-protein-mediated phospholipid hydrolysis.  相似文献   

16.
Depolarization-induced suppression of inhibition (DSI) is a transient reduction of GABAA receptor-mediated IPSCs that is mediated by a retrograde signal from principal cells to interneurons. Using whole-cell recordings, we tested the hypothesis that mGluRs are involved in the DSI process in hippocampal CA1, as has been proposed for cerebellar DSI. Group II mGluR agonists failed to affect either evoked monosynaptic IPSCs or DSI, and forskolin, which blocks cerebellar DSI, did not affect CA1 DSI. Group I and group III mGluR agonists reduced IPSCs, but only group I agonists occluded DSI. (S)-MCPG blocked (1S,3R)-ACPD-induced IPSC suppression and markedly reduced DSI, whereas group III antagonists had no effect on DSI. Many other similarities between DSI and the (1S,3R)-ACPD-induced suppression of IPSCs also were found. Our data suggest that a glutamate-like substance released from pyramidal cells could mediate CA1 DSI by reducing GABA release from interneurons via the activation of group I mGluRs.  相似文献   

17.
Long-term exposure to fluoxetine produces a desensitization of hypothalamic postsynaptic 5-hydroxytryptamine (5-HT)1A receptors, indicated by a substantial inhibition of the 5-HT1A receptor-mediated stimulation of oxytocin and adrenocorticotropic hormone (ACTH) secretion. The present study investigated the time course and mechanism of this desensitization after discontinuation of fluoxetine administration. Male rats were injected with saline or fluoxetine (10 mg/kg/day, i.p.) for 14 days and were challenged with a 5-HT1A agonist, [8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT) 50 microg/kg, s.c.] 2, 4, 7, 14, 28, or 60 days post-treatment. In control animals, 8-OH-DPAT significantly increased (approximately 15-fold) plasma levels of oxytocin and ACTH. At 2 days post-treatment, oxytocin and ACTH responses to 8-OH-DPAT were reduced by 74% and 68%, respectively. During further withdrawal from fluoxetine, there was a gradual increase in the oxytocin response toward control levels. However, even 60 days after discontinuation of fluoxetine, the oxytocin response was still significantly reduced by 26% compared with controls. In contrast, the suppressed ACTH response to 8-OH-DPAT (a less-sensitive indicator of desensitization) gradually returned to control levels by day 14 of withdrawal from fluoxetine. Interestingly, the sustained reductions in the hormone responses occurred in the absence of reductions in Gz or Gi protein levels in the hypothalamus. Furthermore, this desensitization was sustained in the absence of detectable levels of fluoxetine and norfluoxetine in plasma and brain tissue. These findings suggest that the sustained desensitization of hypothalamic 5-HT1A receptor systems, observed during fluoxetine withdrawal, may be due to altered interactions among the protein components of the 5-HT1A receptor system, rather than their absolute levels.  相似文献   

18.
5-Hydroxytryptamine (5-HT; serotonin) administration enhances GABAergic synaptic activity recorded in pyramidal neurons of the CA1 region of hippocampus. Previous studies have attributed this effect to the activation of HT-5(3) receptors located on GABAergic interneurons. During unrelated experiments, we noticed that under our recording conditions, 5-HT can still increase GABAergic synaptic activity after the complete blockade of 5-HT3 receptors. This indicated the involvement of an additional 5-HT receptor subtype. Therefore, we reinvestigated the effects of 5-HT on GABAergic synaptic activity recorded in pyramidal cells of the CA1 region. The ability of 5-HT to increase GABAergic synaptic activity in the presence of 5-HT3 receptor blockade was mimicked by the selective 5-HT2 agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane and blocked by the selective 5-HT2 antagonist ketanserin. This indicated that the additional 5-HT receptor belongs to 5-HT2 receptor family. 5-HT2 receptor activation resulted in an increase in the frequency of spontaneous inhibitory postsynaptic currents as well as a shift in their amplitude distribution toward larger sizes. These effects were absent in the presence of tetrodotoxin. We interpret these results to indicate that 5-HT2 receptors activate GABAergic interneurons in the slice, leading to an increase in GABAergic synaptic activity onto pyramidal cells of the CA1 region.  相似文献   

19.
Effects of ethanol (22 mM) on the modulation of synaptic transmission and long-term potentiation (LTP) by the neurosteroid dehydroepiandrosterone sulfate (DHEAS; 10 microM) was examined in the in vitro rat hippocampal slice preparation. The synaptic responses were elicited by Schaffer collateral stimulation and recorded extracellularly in the somatic and dendritic regions of CA1 pyramidal neurons. LTP induction produced an increase (approximately 55% to 75%) in the amplitude of synaptic responses in ethanol and ethanol plus DHEAS (ethanol/DHEAS) treated slices. These increases were significantly smaller than the approximately 130% increase observed previously in slices treated with DHEAS, but were not significantly different from the approximately 82% increase observed in control slices. These results indicate that an ethanol/DHEAS interaction prevents the enhancement of LTP normally observed with DHEAS treatment of hippocampal slices. An ethanol/DHEAS interaction also altered DHEAS's effects on individual synaptic components of the synaptic response to Schaffer collateral stimulation. Ethanol applied before but not after DHEAS prevented DHEAS's enhancement of the NMDA receptor-mediated synaptic component. DHEAS's depression of the GABAA receptor-mediated synaptic component was also blocked by ethanol. Ethanol or DHEAS individually had no effect on the AMPA receptor-mediated synaptic component, but application of ethanol after DHEAS resulted in a small enhancement of this synaptic component, an effect that was not observed if ethanol was applied before DHEAS. These results show that ethanol and DHEAS interact, altering DHEAS's effects on synaptic transmission and LTP in the hippocampus. Such an interaction may be involved in ethanol's actions on the CNS and raises the possibility that ethanol and DHEAS may act via a common site or pathway.  相似文献   

20.
Fluoxetine is a selective serotonin reuptake inhibitor. Analysis of mu-opioid receptor immunostaining after chronic fluoxetine administration in rats revealed an increase in the density of cells expressing mu-opioid receptors in the caudatus-putamen, the dentate gyrus, the lateral septum and the frontal, parietal and piriform cortices. These data suggest that mu-opioid receptor expression in the rat forebrain is altered by in vivo chronic fluoxetine treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号