首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对高度非线性、多变量、强耦合的高超声速飞行器的纵向模型,设计了飞行控制系统。首先对其进行输入/输出线性化,然后,选择2个解耦的滑动面,以改进的符号函数作为到达条件,设计了一种多输入多输出滑模变结构控制器。分别研究了飞行器对速度和高度阶跃指令下的响应,对标称模型和含有大范围时变参数模型进行了仿真研究。仿真结果表明该方法在存在参数不确定性的条件下,具有较强的鲁棒性能,能够满足系统的性能要求。  相似文献   

2.
高超声速飞行器在机动飞行时易受到外界扰动,若采用传统的状态反馈控制方法,闭环控制系统极易引起振荡,无法满足机动飞行指令信号跟踪的精度要求;若采用传统的滑模控制方法,由于系统存在奇异值的问题,且计算过程较为复杂,控制系统不易于实现.针对上述问题,考虑高速机动飞行控制实际要求,提出了一种基于有限时间时变滑模的线性变参数(LPV)控制器设计方法并应用于高超声速飞行控制.首先不考虑外界扰动,通过传统的状态反馈控制方法使系统保持稳定.然后,在扰动存在的情况下,通过选取一个特殊的滑动函数,设计有限时间时变滑模控制律.为减小系统的抖振现象,引入饱和函数来替换控制律中的符号函数.经理论推导证明了闭环系统中的所有信号都是有界的,并且可以在预定的时间内将跟踪误差控制在零点的一个很小的邻域范围内.仿真验证结果表明,高超声速飞行器机动飞行条件下的状态量可在有限时间内稳定跟踪参考指令信号,且有效地抑制了闭环系统的振荡现象,验证了本方法所设计控制器的有效性.  相似文献   

3.
针对参数不确定和外界干扰下的高超声速飞行器的控制问题,本文提出了一种自适应固定时间控制方法。采用反馈线性化方法对高超声速纵向动力学模型进行输入输出线性化,并基于固定时间控制理论针对该线性模型分别设计了速度和高度通道的固定时间自适应高阶滑模控制器,提高了系统的收敛速度。对于执行器饱和问题,设计了一种新型抗饱和辅助系统并引入控制器中。基于李雅普诺夫理论对所设计的控制器进行严格证明,得到了闭环系统的固定时间收敛特性。与现有文献高阶滑模控制方法进行仿真对比实验,验证了本文所设计方法的有效性和鲁棒性。  相似文献   

4.
5.
为解决高超声速飞行器在爬升的过程中存在严重匹配/非匹配不确定性的问题,提出了一种新型的自适应超螺旋滑模控制方法以抑制爬升段存在的匹配不确定性,并将该方法与滑模微分器相结合,以解决爬升段存在的非匹配不确定性.首先用滑模微分器估计反馈线性化模型中速度和高度的各阶导数,以缩小反馈线性化模型与原模型的差距;其次在传统超螺旋滑模的基础上,加入线性项以提高收敛速度;将积分项中不连续的符号函数连续化,保证控制输入的平滑性,更大程度削弱抖振;针对未知上界复合干扰,设计了一种自适应参数可增大可减小的自适应律,保证参数既不过大估计,又可放宽初值的选取,保证收敛速度. 仿真结果表明:改进后的控制方法可实现状态量在有限时间内跟踪上指令信号,完成控制要求;且相较于传统超螺旋滑模控制算法,改进的控制方法控制输入更加平滑,收敛速度更快,从而验证了该方法的有效性以及先进性.  相似文献   

6.
针对具有非最小相位特性的高超声速飞行器纵向动力学模型,考虑舵面发生卡死和失效故障、系统参数不确定的问题,提出了一种基于输出重定义形式的自适应鲁棒容错控制方法。对于高度子系统中由于升降舵和升力耦合产生的不稳定内动态,重定义系统输出,将俯仰角作为系统新的输出,对新内动态进行一些坐标变换,设计出俯仰角期望的跟踪指令。对于系统重定义后的高度和速度子系统,将未知非线性函数参数化并写成未知气动参数和函数向量的乘积形式,采用自适应学习律估计未知气动参数和故障参数,基于Lyapunov稳定性定理进行了系统稳定性理论分析,通过仿真验证了所给方法的有效性。  相似文献   

7.
将模型预测控制方法应用于高超声速飞行器纵向通道的姿态控制中。利用模型预测的在线滚动优化推导系统的最优控制律,得到高超声速飞行器纵向通道的姿态控制器。仿真结果表明,在气动参数大范围摄动的情况下,控制系统能够很好地跟踪期望攻角,并且具有较强的鲁棒性。  相似文献   

8.
针对高超声速飞行器非线性、多变量、强耦合的特征,将广义预测控制应用于其纵向模型的控制中。对模型进行输入输出反馈线性化,利用基于泰勒展开的有限时间预测控制方法,设计轨迹跟踪预测控制律,使其飞行的高度和速度跟踪控制指令。通过matlab仿真验证了该方法在参数不确定性的条件下,具有一定的鲁棒性,能满足系统的性能要求。  相似文献   

9.
高超声速飞行器广泛采用升力体、乘波体等气动布局和轻质材料,导致飞行器刚体模态与弹性模态的耦合问题突出。针对该类飞行器的特点,使用有限元方法基于变截面自由梁构建高超声速飞行器的结构弹性模型,利用当地流活塞理论计算弹性变形引起的非定常气动力,然后借助均匀设计、逐步回归等统计学方法获取弹性高超声速飞行器的高精度曲线拟合模型。仿真对比分析表明,所介绍的高超声速飞行器弹性建模方法高效、可靠,其所建立的曲线拟合模型与原始物理模型的一致程度及精度均优于现有拟合模型,而所消耗的时间与计算机资源小于现有建模方法。  相似文献   

10.
针对以熔化极气体保护焊(gas metal arc welding,GMAW)为代表的一类非匹配不确定纯反馈非线性系统的输出问题,提出一种基于变幂次趋近律的滑模控制方法。首先,采用滑模微分器得到含系统非匹配不确定性干扰的输出一阶导数。得益于终端滑模有限时间稳定的性能,该方法具有估计精度高、估计误差收敛速度快的优点。然后,提出一种新型的变幂次趋近律,并证明在相同增益下,其趋近速度均快于现有各种趋近律,且具有自适应调节趋近速度的能力,既保证了在全局范围内系统轨迹有限时间趋近滑模面,又避免了在滑模面附近出现抖振。最后,采用变幂次趋近律滑模变结构控制方法和传统趋近律滑模变结构控制方法分别对带有非匹配干扰的GMAW中的弧长进行控制仿真,并对比弧长跟踪效果,分析稳态误差。结果表明,变幂次趋近律滑模变结构方法能够有效的提高系统收敛的快速性,滑模控制方法对于非匹配不确定非线性系具有强鲁棒性。  相似文献   

11.
针对一类非线性不确定系统,通过构建动态干扰观测器系统,提出一种快速神经网络干扰观测器。根据干扰观测误差在线调节神经网络权值,实现对未知综合干扰的逼近,逼近误差一致最终有界。基于神经网络干扰观测器设计了自适应Terminal滑模控制方案,严格证明了闭环系统状态在有限时间内收敛到零,从而提高了状态的收敛速度。最后,通过一个倒立摆的仿真例子,验证了系统的快速性和神经网络干扰观测器的逼近能力。  相似文献   

12.
针对固定翼无人机的姿态和速度控制中存在不确定和外部扰动的问题,设计自适应超螺旋滑模干扰观测器和控制器,实现了固定翼无人机对速度指令和姿态指令的有限时间精确跟踪.首先建立固定翼无人机速度模型和基于四元数的姿态误差模型;进而在该模型的基础上针对无人机飞行过程中的外部扰动和不确定问题,采用自适应超螺旋滑模算法设计干扰观测器对干扰和不确定进行快速估计,并在此基础上设计多变量超螺旋控制器使固定翼无人机快速、精确地跟踪期望的速度和姿态指令;最后基于Lyapunov理论证明了该系统的稳定性.仿真结果表明:所提出的综合控制策略可以实现固定翼无人机速度与姿态的快速精确跟踪并具有良好的鲁棒自适应能力,而且针对无人机不同的飞行指令,使用该控制策略都能使无人机快速稳定的达到预期目标.  相似文献   

13.
弹药传输机械臂固定时间终端滑模控制   总被引:1,自引:0,他引:1  
为提高坦克弹药传输机械臂在路面激励等外界扰动下位置控制的鲁棒性,设计一种固定时间终端滑模控制器(fixed-time terminal sliding mode controller, FTSMC).推导含垂直基础振动的弹药传输机械臂动力学方程,将系统的基础振动处理成干扰项.采用新型固定时间收敛干扰观测器对系统不确定项进行补偿,改善了控制器的鲁棒性.结合固定时间收敛双幂次趋近律和固定时间终端滑模面设计固定时间终端滑模控制器.用Lyapunov理论证明了系统固定时间收敛特性. 3种工况下的对比实验表明,设计的复合控制器对不确定性干扰具有强鲁棒性,能够对外界扰动下的弹药传输机械臂进行准确定位控制.  相似文献   

14.
针对汽车对连续、快速和稳定的车轮滑移率跟踪控制的需求,提出基于自适应快速终端滑模的车轮滑移率跟踪控制策略. 基于Burckhardt轮胎模型建立车轮滑移率跟踪控制模型,将模型简化过程中的不确定性考虑成复合干扰项,将轮胎侧向力对纵向力的影响考虑成未知参数. 利用双曲正切函数和终端吸引因子设计改进的跟踪微分器,平滑车轮滑移率跟踪误差和估计车轮滑移率跟踪误差的一阶导数. 以车轮滑移率跟踪控制模型和改进的跟踪微分器输出为基础,基于自适应快速终端滑模控制理论,设计对复合干扰项具有强鲁棒性的车轮滑移率跟踪控制律;基于投影算子理论设计自适应律来实时补偿未知参数,利用LaSalle不变性原理证明了闭环系统的渐近稳定性. 利用车辆动力学软件仿真验证提出的控制律的可行性和有效性. 结果表明,提出的车轮滑移率跟踪控制策略具有精度高和鲁棒性强的优点.  相似文献   

15.
为研究存在复合干扰的非常规布局菱形翼长航时侦察无人机姿态控制问题,针对系统存在强耦合、非线性、多输入多输出等特点,结合滑模变结构控制理论、分数阶微积分理论、自适应控制理论、新型基于非线性fal函数的快速趋近律及扩张状态干扰观测器,提出了一种包含干扰观测器的自适应分数阶微积分滑模控制方法.首先,为降低控制器的超调现象,结合分数阶微积分理论,利用分数阶微积分算子信息记忆和遗忘的特性,设计了分数阶微积分滑模面,以柔化控制器的输出,使得控制器超调现象得到良好的控制. 其次,为改善传统趋近律收敛时间长,抖震严重等弱点,利用fal函数“小误差大增益,大误差小增益”良好的特性,将非线性fal函数引入到趋近律的设计中,提出了一种可以快速收敛的新型趋近律,平滑无抖震地加快了系统收敛速度. 最后,由于建模误差和外部干扰的存在,使用扩张状态干扰观测器观测出等效干扰并在控制器中引入等效的补偿. 数值仿真结果表明,所提控制方法具有很强的鲁棒性,达到了理想的控制效果.  相似文献   

16.
针对倒立摆控制系统既是非线性系统,又存在干扰及参数不确定的情况,提出了基于干扰补偿的反演终端滑模控制.充分利用反演与终端滑模控制的优点,在反演滑模控制的最后一步,采用终端滑模面取代传统的线性滑模面,使误差快速收敛到零,从而提高控制精度.同时,利用非线性干扰观测器对干扰信号进行估计,并进行前馈补偿,提高系统的抗干扰能力.仿真结果表明所用方法的有效性.  相似文献   

17.
针对空天飞行器再入飞行时动态的强非线性和不确定性问题,提出了一种基于反推法的自适应终端滑模控制方法.首先建立了ASV的具有时变参数的严反馈形式被控模型,进一步采用自适应策略在线估计被控系统的不确定参数,将一阶低通滤波器引入到虚拟控制律设计中,降低反推计算的复杂性.在反推设计的最后一步引入终端滑模控制,以提高控制系统对于匹配不确定性的鲁棒性和系统跟踪误差的收敛速度,同时引入矩阵的广义逆,避免控制增益参数估计过程中可能出现的奇异现象.最后借助Lyapunov稳定性理论,证明了闭环系统误差及状态信号一致最终有界.以某型ASV再入姿态跟踪控制为目标,进行了6自由度飞行仿真验证. 结果表明:所提出的自适应反推终端滑模控制方法跟踪速度快、鲁棒性强,且对不确定参数具有较强的自适应能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号