首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 194 毫秒
1.
150 MPa超高强水泥基材料的研究   总被引:1,自引:0,他引:1  
采用常规原材料和工业废渣,普通成型工艺,通过正交设计试验研究,配制出了抗压强度为150MPa的超高强水泥基材料,并给出了优选配比。超高强水泥基材料强度试验的极差和方差分析表明:水胶比为影响超高强水泥基材料强度的最显著因素,硅灰和不锈钢纤维渣的掺量以及胶砂比也有十分显著的影响。  相似文献   

2.
“实现碳达峰、碳中和”作为国家的重大战略决策,各行业都要为节能减排事业做出贡献,钢渣作为一种可再利用材料备受青睐。本文设计试验采用控制变量法和正交试验法,以改性钢渣粉末(以下称MSP)和普通硅酸盐水泥为主要原料,添加粉煤灰、硅灰、膨胀剂和减水剂等材料制备试样,并测量其1d力学性能。通过对试验结果进行对比分析,了解MSP掺入对水泥基材料早期和晚期强度发展的影响规律。试验结果表明,掺加MSP可以加快水泥基材料凝结速度,显著提高水泥基材料的早期强度。通过正交试验结果筛选出的最优早强水泥基材料,MSP最佳掺量为11%,粉煤灰最佳掺量为4%,减水剂最佳掺量为0.3%,最佳水灰比为0.20,1d抗折强度和抗压强度最大可以达到6.47 MPa和36.64 MPa。用于某钢结构支护体系中,可以满足早强性能要求和实际工程需要。  相似文献   

3.
采用对照试验分析自发光水泥基材料的力学性能,研究了发光砂掺量以及反光粉掺量两个因素对自发光水泥基材料的力学性能的影响.结果表明,通过改变这两个因素的比例,既可以改变自发光水泥基材料的发光强度又可以对其力学强度施加影响.在发光砂掺量为8%时,自发光水泥基材料力学性能最佳,而随着反光粉掺量的增多,自发光水泥基材料力学性能逐...  相似文献   

4.
通过室内自然失水成型和恒温干燥失水成型水泥基材料的强度试验,研究了聚丙烯纤维的保水效应对水泥基材料弯拉强度的影响。结果表明:与保湿成型养护相比,失水成型条件下普通水泥基材料的早期强度下降显著,而失水成型聚丙烯纤维水泥基材料的强度则降低较小;在相同失水环境下,聚丙烯纤维水泥基材料的早期强度相对普通组可提高30%~40%,纤维的保水效应及其对水泥基材料的增强作用显著。此外,纤维的保水、增强效果会随纤维体积掺量的不同而不同,就文中水泥净浆组的研究结果而言(纤维长为9mm),纤维体积掺量为0.4%时的增强效果最佳,然后依次是0.3%和0.1%,而纤维体积掺量为0.2%时的效果最差。  相似文献   

5.
将聚乙烯醇PVA以不同聚胶比(P/B)掺入水泥基灌浆材料中,研究PVA掺量对水泥基灌浆材料抗折强度、抗压强度以及弯曲应变的影响,并进一步确定最佳的PVA掺量;其次对比分析最佳掺量、未掺PVA两种灌浆材料对半柔性路面材料低温性能的影响;最后通过红外光谱试验分析PVA对水泥基灌浆材料的改性机理。结果表明:与PVA-1988相比,PVA-2099可显著提高水泥基灌浆材料抗折、抗压强度,但两种PVA均可改善水泥基灌浆材料的弯曲变形能力,掺量宜为0.1%~0.5%;与未改性水泥基灌浆材料相比,0.1%掺量的PVA-2099可显著提高半柔性路面材料的低温弯拉应力、最大弯曲应变,增幅分别为46.33%、11.92%;PVA改性水泥基复合材料水化主要经历水化交联、填充密实、固结硬化3个阶段,且PVA在自身形成网状结构的同时,又与水泥水化产物发生化学键合形成醋酸钙,提高材料整体强度及变形能力。  相似文献   

6.
PVA纤维水泥基材料力学性能试验研究   总被引:1,自引:0,他引:1  
为了制备超高韧性的水泥基复合材料(ultra high toughness cementitious composites,UHTCC),通过抗压、抗折以及直接拉伸试验,结合扫描电镜(SEM)测试,探讨粉煤灰掺量、石英砂掺量对UHTCC力学性能的影响;通过粉煤灰-石英砂复配,研究超高韧性水泥基材料的最优粉煤灰-石英砂掺量配比.结果表明:随着粉煤灰掺量的增加,抗压、抗折强度降低,拉伸变形增大,但是当粉煤灰质量/水泥质量(m(FA)/m(C))大于2.7后,拉伸变形提高缓慢;当石英砂质量/胶凝材料的质量(m(S)/m(B))为0.36时,拉伸变形性能最好;本文确定的最优粉煤灰-石英砂体系掺量为:m(FA)/m(C)-m(S)/m(B)=1.2-0.48,m(FA)/m(C)-m(S)/m(B)=2.2-0.36.  相似文献   

7.
通过正交试验提出纳米超高强高流态混凝土的胶凝材料配合比设计参数,并研究了纳米SiO2的掺入对传统掺硅灰、粉煤灰超高强水泥基胶凝材料强度及工作性能的影响。在保证水胶比不变的条件下,开展了混凝土配合比试验,并研究了纳米SiO2对混凝土抗压强度的影响及其微观机理。结果表明:超高强高流态混凝土中胶凝材料最优比例为:纳米SiO2:硅灰:粉煤灰:水泥=1:8:20:71;在胶凝材料用量为600~1 000 kg/m3范围内,随着其掺量的增加,混凝土流动度不断增加,抗压强度先增大后减小,当其掺量为800 kg/m3时,抗压强度最大。分析认为,纳米SiO2、硅灰与粉煤灰形成的三元多尺度堆积体系能优化粉体材料在混凝土中的微集料密实填充效应,纳米SiO2的二次水化反应也有效改善了硬化水泥石的微观结构,并优化其形态分布,进一步增大其强度。  相似文献   

8.
研究安防系统对超高性能水泥基复合材料工作性及超高力学性能的特殊要求,以大掺量超细工业废渣取代水泥,掺加超高硬度细集料,采用高温干热养护制度,成功制备出一种超高性能水泥基复合材料.对其工作性及不同养护温度和养护时间下的力学性能进行测试,结果表明,制备的材料具有较好的工作特性及超高力学性能,可满足安保产品要求,其抗压强度最高可达240 MPa.采用X射线衍射技术、差热-热重分析方法及扫描电镜对其微观结构形成进行分析,结果显示,超高硬度细集料与胶凝材料的强物理结合使其在复合材料中起增强相的作用,高温养护加速了水泥的水化及矿物惨合料的火山灰反应,降低了材料中Ca(OH)2的含量,增加了C-S-H凝胶的含量,提高了材料的密实度,改善了界面微观结构,提高了超高性能水泥基复合材料的宏观力学性能.  相似文献   

9.
分别以配制的氯氧镁水泥、硫氧镁水泥、磷酸镁水泥为胶凝材料,采用化学发泡制备干密度等级为A05的三种镁基泡沫混凝土。通过设计正交试验,确定了水胶比、镁水泥组分配比、缓凝剂掺量、粉煤灰掺量和聚丙烯纤维掺量对三种镁基泡沫混凝土抗压强度的影响程度,对比分析了重要影响因素的作用机理,建立了镁基泡沫混凝土比强度与镁水泥组分配比的函数关系式。研究结果表明,氯氧镁泡沫混凝土抗压强度影响因素的主次关系为:镁水泥组分配比>水胶比>粉煤灰掺量>聚丙烯纤维掺量>缓凝剂掺量,各因素对硫氧镁泡沫混凝土抗压强度影响显著性与氯氧镁泡沫混凝土相同,磷酸镁泡沫混凝土抗压强度影响因素的主次关系为:镁水泥组分配比>缓凝剂掺量>水胶比>粉煤灰掺量>聚丙烯纤维掺量,与氯氧镁泡沫混凝土和硫氧镁泡沫混凝土略有不同,缓凝剂掺量影响程度较高;镁水泥的组分配比是影响镁基泡沫混凝土强度的重要指标,氯氧镁泡沫混凝土与硫氧镁泡沫混凝土的抗压强度随镁水泥组分配比增加的变化趋势相同,均先减小后增大,而磷酸镁泡沫混凝土随镁水泥组分配比增加呈现先增大后减小的趋势;三种镁基泡沫混凝土的比强度与镁水泥组分配比之间存在幂函数关系。  相似文献   

10.
为研究高韧性水泥基材料养护龄期与其力学性能之间的关系,对不同纤维掺量的水泥基材料开展抗压、抗折性能试验,测定不同纤维掺量的混凝土在7d、14d、28d、35d的抗压强度和抗折强度,并与基准混凝土试块对比。结果表明:纤维的掺入能够较好地提高混凝土的力学性能,高韧性水泥基材料的抗压强度和抗折强度与基准混凝土相比差异较大;基体抗压强度增幅不高而抗折性能有较大提高,试验抗折强度最高提高92.32%;高韧性水泥基材料抗压强度与抗折强度均随养护龄期的增加而增大,适当延长养护龄期有利于提高高韧性水泥基材料的工作性能。  相似文献   

11.
The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The reaction degree of silica fume was calculated from the Q4 silica tetrahedron, which was used as a probe obtained from 29 Si solid state nuclear magnetic resonance analysis. The fl at of compressive strength after 28 days disappeared for blended cement with inereasing reaction degree of silica fume. The compressive strength of the blended cement pastes approached that of P.I. cement pastes after 56 days and exceeded that after 90 days. The addition of silica fume and the w/b ratio of blends are both critical to the reaction degree of silica fume. The appropriate addition of silica fume, high silica fume reaction degree and low w/b ratio are benefi cial to the compressive strength of the cement-silica fume blends.  相似文献   

12.
含粗骨料的超高性能混凝土抗压强度的影响因素   总被引:2,自引:0,他引:2  
使用普通原材料和高性能减水剂成功制备出抗压强度值超过130 MPa的超高性能混凝土,并试验研究了其抗压强度的影响因素.包括水胶比、粗骨料的颗粒粒径、细骨料的细度模数、胶凝材料的掺量、矿物掺合料和钢纤维.结果显示,各因素均对超高性能混凝土的抗压强度有一定影响,尤其是水胶比和矿物掺合料影响显著.当水胶比介于0.21和0.24之间时,超高性能混凝土的抗压强度随着水胶比的增大而降低,但水胶比为0.16的超高性能混凝土抗压强度值反而低于水胶比为0.18的混凝土的抗压强度.硅灰、粉煤灰和矿粉以1∶2∶1的质量比混掺使用最有利于提高超高性能混凝土的抗压强度,28 d龄期时抗压强度值达到138 MPa.  相似文献   

13.
为了降低活性粉末混凝土的制备成本同时获得高强度制品,根据活性粉末混凝土的制备原理,采用价格相对较低的白云石砂、白云石粉取代其原料中价格较高的石英砂、石英粉来制备高强混凝土.利用水泥,硅灰,粉煤灰三元胶凝材料体系,在水泥,白云石粉,减水剂的相对掺量不变的条件下,用单元变量的方法分别改变水胶比,以及硅灰、粉煤灰、白云石砂和钢纤维的掺量,探讨了不同配合比设计对样品强度的影响.通过研究发现:水胶比,以及粉煤灰、硅灰、白云石砂的掺量变化对样品的抗压强度影响较大,抗折强度的影响较小,而钢纤维掺量变化对样品的抗压和抗折强度的变化都很明显.最后得出最佳配合比设计为:水胶比为0.16,硅灰、粉煤灰、白云石砂、白云石粉的掺量分别为水泥用量的0.3、0.3、0.9、0.2,钢纤维的掺量为体积分数的2%,减水剂的掺量为胶凝材料总量的2%.制备的混凝土样品脱模后先采用水泥砼标准养护2天,再于90℃热水中养护3天,测得样品的抗压强度超过150MPa,抗折强度达到30MPa.  相似文献   

14.
介绍了在高性能蒸养水泥中掺入钢纤维制备出高性能水泥基复合材料的研究对象,研究了水灰比(W/C),砂灰比(S/C),钢纤维掺量对水泥基复合材料性能的影响;并用XRD、SEM分析其微观结构和形貌,试验结果表明,将钢纤维掺入到高性能蒸养水泥中并采用适当的工艺,可制备出抗夺强度达133MPa,抗折强度达24.5MPa的高性能水泥基复合材料。  相似文献   

15.
The effect of fly ash and silica fume on hydration rate and strength of cement in the early stage was studied. Contrast test was applied to the complex cementitious system to investigate the hydration rate. Combined with mechanical strength, the influence of fly ash and silica fume during the hydration process of complex binder was researched. The peak of the rate of hydration heat evolution and the mechanical strength decreased as the ratio of fly ash increased, however, as the ratio of silica fume increased, the peak of the rate of hydration heat evolution and the mechanical strength increased obviously. When the ratios of fly ash and silica fume are 10% and 5%, the peak of the rate of hydration heat evolution is the highest. At the same time 7 days of flexural and compressive strength are the highest as 8.89 MPa and 46.52 MPa, respectively. Fly ash and silica fume are the main factors affecting the hydration rate and the mechanical property.  相似文献   

16.
This paper presents investigation results on the natural ultra-fine mineral flour of crystalline silica fume (CSF) and porous quartz sand stone (PQSS) which can modify cement mortar strength under hydrothermal synthesis reaction (HSR) in the autoclave-cured condition. The replacement of cement by CSF and PQSS can signifi cantly increase the flerural and compressive strength. which reach 22MPa and 150MPa respectively, and decrease the porosity of the cement mortar. The ratio of fine aggregation, standard sand to cementious material has significant influence on the mortar strength. The mechanisms involved in cement and natural mineral flour and the HSR are presented. CaO/SiO_2 ratio ranges from 3.20 to 1.11. the main hydrate phase is C_2SH and there is not Tohermorite through X-Ray diffraction qualitative analysis. The new and ultra-high strength cementbms material as basic material of sleeper concrete can be used in prestressed reinforcement sleeper concrete.  相似文献   

17.
C40特细砂混凝土和易性和抗压强度研究   总被引:3,自引:0,他引:3  
利用邯郸当地的原材料制备C40特细砂混凝土,采用正交设计方法,试验研究了水胶比、粉煤灰取代率、砂率对特细砂混凝土28d抗压强度及和易性的影响。结果表明,粉煤灰取代率是影响混凝土28d抗压强度的最主要因素,砂率是影响混凝土和易性的最主要因素;适当的粉煤灰取代率能提高混凝土28d抗压强度;随着砂率的增加,塌落度大幅下降而强度略有降低;水胶比为0.45,粉煤灰取代率为10%,砂率为30%,通过添加1.2%的高效减水剂可配制出28d强度达59.1MPa、塌落度为60ram的混凝土。  相似文献   

18.
为探究超轻质水泥基复合材料(ultra lightweight cement composite,ULCC)的基本力学性能及应力-应变曲线本构关系.以粉煤灰空心微珠为唯一轻质微集料,以水泥和硅灰为胶凝材料,以高效减水剂和减缩剂为外加剂,配制了钢纤维体积掺量为1%,表观密度介于1 250~1 550 kg/m3,轴心抗压强度介于47.9~70.0 MPa的4种不同密度等级的ULCC.对其分别进行单轴抗压和单轴抗拉试验,分别研究了ULCC的轴心抗压和轴心抗拉力学性能,测得了ULCC材料轴心抗压强度、轴心抗拉强度、弹性模量、泊松比及单轴抗压和单轴抗拉应力-应变曲线.结果表明:ULCC的抗压强度、抗拉强度和弹性模量均随密度的增加而增加; ULCC的轴心抗压强度和弹性模量与密度呈较强线性相关性.轴心抗拉试验结果表明ULCC抗拉应力-应变曲线关系呈现明显的峰后平台段,ULCC材料具有良好的拉伸变形能力.根据试验测得的ULCC单轴抗压和单轴抗拉应力-应变全曲线,建立了ULCC单轴抗压和单轴抗拉的分段式应力-应变本构方程.研究成果可为ULCC结构的设计和非线性有限元计算提供理论依据.  相似文献   

19.
多元复合超早强灌浆料试验   总被引:1,自引:0,他引:1  
目的研究铝酸盐水泥、普通硅酸盐水泥、石膏和硅灰四元复合体系超早强灌浆料的流动度、凝结时间和力学性能,找出超早强灌浆料的最佳配比.方法采用行星式搅拌机将原材料搅拌均匀,利用跳桌测试流动度,贯入阻力法测定凝结时间,水泥压力试验机测试力学强度,混凝土收缩膨胀仪测试膨胀性能,分析砂胶比为1.0的微观结构.结果该体系辅以多种外加剂,采用高胶砂比可以保证初始流动度大于325mm,30min流动度大于280mm,2h抗压强度达34.80MPa,24h抗折达13.82MPa,28d抗压强度大于99.90MPa,56d抗压强度大于28d抗压强度.早期SEM微观结构显示晶形生长良好,结构致密.结论铝酸盐水泥、普通硅酸盐水泥、石膏和硅灰按一定的比例复配,具有良好的施工和易性和力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号