首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 927 毫秒
1.
崔嘉杰  罗萍 《微电子学》2014,(4):416-419
基于CSMC 0.5μm标准CMOS工艺,设计了一种高精度电流型CMOS带隙基准电压源。仿真结果表明,温度在-40℃~125℃范围内,基准输出电压的温度系数为1.3×10-5/℃;电源电压在3.3~5 V之间变化时,基准输出电压变化为0.076 mV,电源抑制比PSRR为-89 dB。同时,该电路包含修调电路,可在不同工艺角下进行校正,具有温度系数低、电源抑制比高、精度高等特点。  相似文献   

2.
基于SMIC 65 nm CMOS工艺,设计了一种带曲率补偿的低压高电源抑制比(PSRR)带隙基准电压源。采用带曲率补偿的电流模结构,使输出基准电压源低于1.2 V且具有低温漂系数。在基本的带隙基准电路基础上,增加基准核的内电源产生电路,显著提高了电路的PSRR。采用Cadence Spectre软件,在1.8 V电压下对电路进行仿真。结果表明,在1 kHz以下时,PSRR为-95.76 dB,在10 kHz时,PSRR仍能达到88.51 dB,在-25 ℃~150 ℃温度范围内的温度系数为2.39×10-6 /℃。  相似文献   

3.
一种高精度高电源抑制比的带隙基准电压源的设计   总被引:1,自引:1,他引:0  
设计了一种具有良好稳定性和高精度的带隙基准电压源电路。通过启动电路和提高电源抑制比电路的加入,使得带隙基准电压具有较高的电源电压抑制比和较小的温度系数。HSPICE仿真结果表明,在电源电压V_(DD)=3.3V时,在-55℃~125℃的温度范围内,电路得到一个温度系数仅为17×10~(-6)/℃,电源抑制比(PSRR)为79dB的带隙基准电压输出。  相似文献   

4.
范建功  冯全源 《微电子学》2016,46(4):493-496
在传统带隙基准源的基础上,设计了一种改进型带隙基准源电路,能很好地抑制三极管集电极电流变化对输出的影响,获得很低的温度系数和很高的电源电压抑制比。基于BCD 0.18 μm工艺库,仿真结果表明,当电源电压VIN为4.5 V,温度范围为-40 ℃~140 ℃时,基准源电路的输出电压范围为1.2567~1.2581 V,温度系数为6.3 ×10-6/℃;电源电压在2.5~5 V范围内变化时,基准源电路输出的最大变化仅为1.66×10-4 V,线性调整率为0.006 64 %;低频电源电压抑制比高达97 dB。过温保护电路(OTP)仿真表明,该基准源电路有良好的温度特性,温度不高于140 ℃都可正常工作。  相似文献   

5.
传统带隙基准源电路采用PNP型三极管来产生ΔVbe,此结构使运放输入失调电压直接影响输出电压的精度。文章在对传统CMOS带隙电压基准源电路原理的分析基础上,提出了一种综合了一阶温度补偿和双极型带隙基准电路结构优点的高性能带隙基准电压源。采用NPN型三极管产生ΔVbe,消除了运放失调电压影响。该电路结构简洁,电源抑制比高。整个电路采用SMIC 0.18μmCMOS工艺实现。通过Cadence模拟软件进行仿真,带隙基准的输出电压为1.24V,在-40℃~120℃温度范围内其温度系数为30×10-6/℃,电源抑制比(PSRR)为-88 dB,电压拉偏特性为31.2×10-6/V。  相似文献   

6.
李帅人  周晓明  吴家国 《电子科技》2012,25(9):88-90,114
基于TSMC40nmCMOS工艺设计了一种高精度带隙基准电路。采用Spectre工具仿真,结果表明,带隙基准输出电压在温度为-40—125℃的范围内具有10×10^-6/℃的温度系数,在电源电压在1.5-5.5V变化时,基准输出电压随电源电压变化仅为0.42mV,变化率为0.23mv/V,采用共源共栅电流镜后,带隙基准在低频下的电源电压抑制比为-72dB。  相似文献   

7.
超低压差线性稳压器的带隙基准电路设计   总被引:1,自引:0,他引:1  
余华  邹雪城  陈朝阳 《半导体技术》2006,31(7):542-545,548
设计了一种采用电流反馈及电阻分压技术,输出可调的,用于单片集成超低压差的CMOS线性稳压器的高性能带隙基准电压电路.它可产生1~1.2217V多个电压基准;当温度从-40~125℃变化时,温度系数为23×10-6/K;具有较高的电源抑制比(PSRR),其值为78dB.输入电压在2.5~6V变化时,基准电压的变化范围为1.221685±0.055mV,该电路还可为其它电路模块提供PTAT电流.  相似文献   

8.
一种带输出缓冲的低温度系数带隙基准电路   总被引:1,自引:0,他引:1  
陈磊  李萌  张润曦  赖宗声  俞建国   《电子器件》2008,31(3):820-823
基于TSMC 0.18μm标准CMOS标准工艺,提出了一种低温度系数,宽温度范围的带隙基准电压电路,该电路具有高电源抑制比,启动快及宽电源电压工作区域的优点,由于具备输出缓冲,可提供较低的输出阻抗及较高的电流负载能力.电路在-40℃到 110℃的温度变化范围内,基准电压为2.302 0 V±0.001 5 V,温度系数仅为7.25×10-6/℃(-40℃到 110℃时),PSRR为64 dB(11 kHz处),电源电压变化范围为1.6~4.3 V,输出噪声为5.018μV/平方根Hz(1 kHz处).  相似文献   

9.
在对传统典型CMOS带隙电压基准源电路分析基础上提出了一种高精度、高电源抑制带隙电压基准源。采用二阶曲率补偿技术,电路采用预电压调整电路,为基准电路提供稳定的电源,提高了电源抑制比,在提高精度的同时兼顾了电源抑制比,整个电路采用了CSMC0.5μm标准CMOS工艺实现,采用spectre进行进行仿真,仿真结果显示当温度为-40℃~80℃,输出基准电压变化小于1mV,温度系数为3.29×10-6℃,低频时(1kHz)的电源抑制比达到75dB,基准电路在高于3.3V电源电压下可以稳定工作,具有较好的性能。  相似文献   

10.
一种低功耗CMOS带隙基准电压源的实现   总被引:7,自引:0,他引:7  
冯勇建  胡洪平 《微电子学》2007,37(2):231-233,237
运用带隙基准的原理,提出了一种带启动电路的低功耗带隙基准电压源电路。HSPICE仿真结果表明,在25℃3、.3 V下,电路功耗为16.88μW;另外,在-30~125℃范围内,1.9~5.5V下,输出基准电压VREF=1.225±0.0015 V,温度系数为γTC=14.75×10-6/℃,电源电压抑制比(PSRR)为86 dB。该电路采用台积电(TSMC)0.35μm 3.3 V/5 V CMOS工艺制造。测试结果显示,电路功耗仅为16.98μW。  相似文献   

11.
一种改进型BiCMOS带隙基准源的仿真设计   总被引:1,自引:1,他引:0  
依据带隙基准原理,设计了一种基于90 nm BiCMOS工艺的改进型带隙基准源电路.该电路设置运算跨导放大器以实现低压工作,用共源-共栅MOS管提高电路的电源抑制比,并加设了新颖的启动电路.HSPICE仿真结果表明,在低于1.1 V的电源电压下,所设计的电路能稳定地工作,输出稳定的基准电压约为610 mV;在电源电压V_(DD)为1.2 v、温度27℃、频率为10 kHz以下时,电源噪声抑制比约为-45 dB;当温度为-40~120℃时,电路的温度系数约为11 × 10~(-6)℃,因此该基准源具有低工作电压、高电源抑制比、低温度系数等性能优势.  相似文献   

12.
孙大开  李斌桥  徐江涛  李晓晨 《微电子学》2012,42(4):531-533,550
描述了一个具有高电源抑制比和低温度系数的带隙基准电压源电路。基于1阶零温度系数点可调节的结构,通过对不同零温度系数点带隙电压的转换实现低温度系数,并采用了电源波动抑制电路。采用SMIC 0.18μm CMOS工艺,经过Cadence Spectre仿真验证,在-20℃~100℃温度范围内,电压变化范围小于0.5mV,温度系数不超过7×10-6/℃。低频下的电源抑制比为-107dB,在10kHz下,电源抑制比可达到-90dB。整个电路在供电电压大于2.3V时可以实现正常启动,在3.3V电源供电下,电路的功耗约为1.05mW。  相似文献   

13.
采用ASMC0.35μm CMOS工艺设计了低功耗、高电源抑制比(PSRR)、低温漂、输出1V的带隙基准源电路。该设计中,偏置电压采用级联自偏置结构,运放的输出作为驱动的同时也作为自身电流源的驱动,实现了与绝对温度成正比(PTAT)温度补偿。通过对其进行仿真验证,当温度在-40~125℃和电源电压在1.6~5V时,输出基准电压具有3.68×10-6/℃的温度系数,Vref摆动小于0.094mV;在低频时具有-114.6dB的PSRR,其中在1kHz时为-109.3dB,在10kHz时为-90.72dB。  相似文献   

14.
吴蓉  张娅妮  荆丽 《半导体技术》2010,35(5):503-506
利用带隙电压基准的基本原理,结合自偏置共源共栅电流镜以及适当的启动电路,设计了一种新型基准电压源。获得了一个低温度系数、高电源抑制比的电压基准。通过对输出端添加运算放大器,把带隙基准电路产生的1.2 V电压提高到3.5 V,提高了芯片性能。用Cadence软件和CSMC的0.5μm CMOS工艺进行了仿真,结果表明,当温度在-20~+120℃,温度系数为9.3×10-6/℃,直流时的电源抑制比为-82 dB。该基准电压源能够满足开关电源管理芯片的使用要求,并取得了较好的效果。  相似文献   

15.
在传统带隙基准电压源电路结构的基础上,通过在运放中引入增益提高级,实现了一种用于音频Σ-ΔA/D转换器的CMOS带隙电压基准源。在一阶温度补偿下实现了较高的电源抑制比(PSRR)和较低的温度系数。该电路采用SIMC 0.18-μm CMOS工艺实现。利用Cadence/Spectre仿真器进行仿真,结果表明,在1.8 V电源电压下,-40~125℃范围内,温度系数为9.699 ppm/℃;在27℃下,10 Hz时电源抑制比为90.2 dB,20 kHz时为74.97 dB。  相似文献   

16.
刘春娟  张帆  王永顺  刘肃 《微电子学》2012,42(4):527-530,546
基于带隙基准原理,通过优化电路结构和采用BiCMOS技术,提出一种精度高、噪声小的带隙基准源电路。利用具有高开环增益的折叠式共源共栅放大器,提高了低频电压抑制比;应用低跨导PMOS对管及电路输出端低通滤波器,实现了更低的噪声输出;合理的版图设计减小了失调电压带来的影响。Hspice仿真结果表明,在3V电源电压下,输出基准电压为1.2182mV,温度系数为1.257×10-5/℃;频率从103~105 Hz变化时,输出噪声最大值的变化量小于5μV。流片测试结果表明,该基准源输出基准电压的电源抑制比高,温度系数小,噪声与功耗低。  相似文献   

17.
设计了一款低温度系数的自偏置CMOS带隙基准电压源电路,分析了输出基准电压与关键器件的温度依存关系,实现了低温度系数的电压输出。后端物理设计采用多指栅晶体管阵列结构进行对称式版图布局,以压缩版图面积。基于65 nm/3.3 V CMOS RF器件模型,在Cadence IC设计平台进行原理图和电路版图设计,并对输出参考电压的精度、温度系数、电源抑制比(PSRR)和功耗特性进行了仿真分析和对比。结果表明,在3.3 V电源和27℃室温条件下,输出基准电压的平均值为765.7 mV,功耗为0.75μW;在温度为-55~125℃时,温度系数为6.85×10~(-6)/℃。此外,输出基准电压受电源纹波的影响较小,1 kHz时的PSRR为-65.3 dB。  相似文献   

18.
贾鹏  丁召  杨发顺 《现代电子技术》2013,(24):156-159,163
基于传统带隙基准的原理,通过优化电路结构,消除双极晶体管基极.发射极电压中的非线性项,设计了一种带2阶补偿的多输出带隙基准电压源。整个电路采用CSMC0.5μmCMOS工艺模型进行仿真。Spectre仿真结果表明,在-55~125℃的温度范围内,带隙基准电压源的温度系数为3.1ppm/℃,在5V电源电压下,输出基准电压为1.2994V;带隙基准电压源的电源抑制比在低频时为84.5dB;在5v电源电压下,可以同时输出0—5V多个基准电压。  相似文献   

19.
设计了一种基于反馈电路的基准电压电路。通过正、负两路反馈使输出基准电压获得了高交流电源抑制比(PSRR),为后续电路提供了稳定的电压。采用NPN型三极管,有效消除了运放失调电压对带隙基准电压精度产生的影响,并对电路进行温度补偿,大大减小了温漂。整个电路采用0.35μm CMOS工艺实现,通过spectre仿真软件在室温27℃、工作电压为4 V的条件下进行仿真,带隙基准的输出电压为1.28 V,静态电流为2μA,在-20~80℃范围内其温度系数约为18.9×10-6/℃,交流PSRR约为-107 dB。  相似文献   

20.
利用CMOS工艺中Poly电阻和N-well电阻温度系数的不同,设计了一种输出可调的二阶曲率补偿带隙基准电压源.采用Chartered 0.35μm CMOS工艺模型,使用Cadence工具对电路进行了仿真,结果表明电路在电源电压为1.8V时可正常工作,当其在1.8~3V范围内变化时,基准电压变化仅有3.8mV;工作电压为2V时,输出基准电压在-40°C到80°C的温度范围内温度系数为1.6ppm/°C,工作电流为24μA,低频下的电源抑制比为-47dB.该带隙基准电压源的设计可以满足低温漂、高稳定性、低电源电压以及低功耗的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号