首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Eu2+离子在Sr2Al6O11基磷光体中发光行为的研究   总被引:2,自引:0,他引:2  
研究了不同Eu掺杂浓度对Sr2Al6O11基磷光体发光性能的影响。结果发现,当Eu掺杂浓度低于0.01mol时,在其发射光谱中存在403和493nm的主发射峰,对应着Sr2Al6O11基质中Sr的两种不同位置Sr1和Sr2位。随着Eu掺杂浓度增加,由于能量传递作用,导致403nm的发射峰消失,493nm的发射峰增强。余辉衰减曲线表明,未掺杂Dy的磷光体没有余辉性能,当Eu掺杂量在0.01mol时,余辉性能最好,进一步提高Eu的掺杂量,由于浓度猝灭作用,导致发光性能下降。  相似文献   

2.
高密度发光材料γ-Bi2WO6:Pr3+的发光性质研究   总被引:6,自引:0,他引:6  
研究了用固相法制备的高密度发光材料γ-Bi2WO6Pr3+的结构、光致发光光谱、激发谱和γ-Bi2WO6的漫反射谱.由实验测得它的晶格参数为a=5.45A,b=16.42A,c=5.43A,密度Dx=9.53g/cm3.它的光致发光光谱主发射峰位于600、608、611、629nm,分别来自于pr3+的1D2→3H4、3P0→3H5、3P0→3H6、3P0→3F2跃迁的发射.其激发谱由位于约225~430nm范围内、最大值约在372nm的主激发带和450nm的激发峰组成;主激发带来自于基质,可能是基质的带间吸收、W-O间电荷迁移吸收和缺陷能级的吸收;450nm的激发峰来自于pr3+的3H4→3P2跃迁吸收.BWOPr3+的最佳掺杂浓度为0.8mol%左右.  相似文献   

3.
以工业废弃物黄磷炉渣为原料,用硝酸浸出得到具有三维网状结构的二氧化硅(SiO2)。采用化学沉淀法制备出荧光强度较高以及良好的光学稳定特性的SiO2:Tb3+荧光材料。通过X射线衍射、热重-差热分析、红外吸收光谱、扫描电子显微镜和荧光光谱等现代分析手段对荧光材料表面形貌和内部结构特征以及发光性能进行表征测试。结果表明,SiO2:Tb3+荧光材料为无定型结构。在激发光谱图中,377 nm(7F6-5L10)处有一较强的激发峰,其发射峰位于544 nm处,归属于Tb3+5D4-7F5特征跃迁发射,在紫外光照射下呈现明亮的绿色荧光。经过30天的材料稳定性测试,荧光强度下降速度仅为38 a.u/天,基本保持稳定,证实了该材料具有良好的光学稳定特性。  相似文献   

4.
溶胶-冷冻法制备纳米Gd2O3:Eu3+发光材料   总被引:6,自引:0,他引:6  
采用溶胶-冷冻法合成了粒径为20nm左右的近似于球形的Gd2O3:Eu^3+发光材料.XRD和FTIR分析表明:所合成的前驱体样品为带有结晶水的晶态氢氧化物,经过热处理后得到了立方相的Gd2O3.荧光光谱测试表明:所合成的样品具有良好的Eu^3+特征红光发射,Gd^3+到Eu^3+之间具有有效的能量传递过程.随着灼烧温度的升高,发射峰和激发峰的强度有所增强,荧光寿命变长,这是由于热处理温度升高,晶体生长变好,表面缺陷减少,使表面的猝灭中心减少,从而提高了荧光强度和荧光寿命.  相似文献   

5.
Lu2O3:Yb3+, Ho3+纳米粉体的发光性能研究   总被引:1,自引:0,他引:1  
采用共沉淀工艺合成了Yb3 离子和Ho3 离子共掺杂的Lu2O3纳米粉体,研究了粉体的斯托克斯(Stokes)和反斯托克斯(Anti-Stokes)发光特性以及煅烧温度对粉体发光性能的影响.在氙灯447.5nm和半导体激光器980nm激发下样品均发射出明亮的绿光,观察到了不同Ho3 离子浓度掺杂的纳米粉体的浓度淬灭现象.发射强度与激发功率的关系表明Anti-Stokes发光是双光子过程,能量转移是主要的上转换机制.Ho3 离子的5F4,5S2能级在不同波长激发下的衰减时间也证实了浓度淬灭及能量转移现象.  相似文献   

6.
樊国栋  赵琪  陈华  李阿峰 《功能材料》2013,44(9):1226-1229
以尿素为燃料硼酸为助熔剂,采用燃烧法合成了Sr2CeO4∶Eu3+、Tb3+发光材料。测试结果表明,当Tb3+的掺杂为1%(摩尔分数)时,合成的样品为单相Sr2CeO4斜方晶系结构,其样品的激发光谱为240~370nm的宽带双峰,发射光谱为400~550nm宽带峰,余辉衰减曲线的结果显示,适量的掺杂Tb3+可以提高产品的发光性能。与Sr2CeO4∶Eu3+相比,掺杂Tb3+有利于形成结晶度好的固溶体,样品的发光强度明显提高。  相似文献   

7.
Ca2SnO4:Eu3+的固相反应形成机理及发光性质研究   总被引:5,自引:0,他引:5  
利用高温固相反应法合成了Ca2-xEuxSnO4发光粉末样品,采用X射线衍射技术和荧光光谱等测试手段对样品的固相反应形成机理及光谱特性进行了研究.对于CaCO3和SNO2(2:1)混合粉料,在1250℃进行固相反应时将优先反应生成不稳定的中间相CaSnO3,该相再与CaO继续反应生成最后稳定的目标相Ca2SnO4.Ca2-xEuxSnO4样品在240-360nm范围内存在着Eu^3+-O^2-电荷迁移吸收带,随着Eu^3+掺杂浓度(x=0.01-0.15)的增加,吸收带峰位从274nm红移至292nm附近.Ca2SnO4:Eu^3+发光体的发射以电偶极跃迁^2Do-^7F2为主导地位,在紫外光激发下产生强的红光发射.在Ca2SnO4基质中,Eu^3+离子的多声子弛豫过程几率小,当Eu^3+掺杂浓度较低时,可以观察到来自于Eu^3+较高激发态能级^5D2和^5D1上的辐射跃迁.Eu^3+离子在同构的Ca2SnO4和Sr2CeO4基质中的发射光谱形状类似,但Ca2SnO4:Eu^3+的红光发射强度远大于Sr2CeO4:Eu^3+.  相似文献   

8.
KBaPO4:Tb3+材料制备及其发光特性   总被引:2,自引:0,他引:2  
采用高温固相法合成了KBaPO4:Tb3+绿色发光荧光粉,并研究了材料的发光性质.KBaPO4:Tb3+材料呈多峰发射,发射峰位于437、490、545、586和622 nm,分别对应Tb3+的5D3→7F4和5D4→7FJ=6,5,4,3跃迁发射,主峰为545 nm;监测545 nm发射峰,所得激发光谱由4f 7-5d1的宽带吸收(200~330 nm)和4f-4f电子吸收(330~400 nm)组成,主峰为380 nm.研究了Tb3+掺杂浓度,电荷补偿剂Li+、Na+、K+和Cl-,及敏化剂Ce3+对KBaPO4:Tb3+材料发射强度的影响.结果显示,调节激活剂浓度、添加电荷补偿剂或敏化剂均可在很大程度上提高材料的发射强度.上述结果表明KBaPO4:Tb3+材料是一种很好的近紫外光激发型高效绿色发光荧光粉.  相似文献   

9.
采用高温固相法合成白光LED用Sr3-x-yMySiO5:Eu2x+(M=mg2+、Ca2+、Ba2+、Zn2+等)发光材料,优化荧光粉的合成条件,测定样品的光谱数据,寻找Eu2+和Mg2+、Ca2+、Ba2+、Zn2+等的最佳掺杂量,使其在460nm蓝光激发下得到最优的光谱性能。  相似文献   

10.
付兵  欧娅  刘欢  顾曼琦  陈卓  杨锦瑜 《材料导报》2017,31(18):16-20
采用水热法合成Ba~(2+)共掺杂YPO4∶Tb~(3+)荧光材料,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光分光光度计等研究了合成样品的物相组成和荧光性能,并分析了Ba~(2+)掺杂量和反应体系pH值等对合成样品的物相结构及荧光性能的影响。结果表明,反应体系pH值和Ba~(2+)掺杂量直接影响所制备样品的结构与性能。少量Ba~(2+)(≤10%,原子分数,下同)共掺杂YPO4∶1%Tb~(3+)样品均为纯相四方晶系磷钇矿结构晶体,过量Ba~(2+)掺杂导致Ba_3(PO_4)_2杂质相的出现;pH值为6的水热环境下可获得高结晶度的单一相Ba~(2+)、Tb~(3+)共掺杂YPO4样品。激发和发射光谱测试结果表明,所制备的YPO4∶1%Tb~(3+),x%Ba~(2+)样品可被225nm的紫外光有效地激发而发射出强烈的Tb~(3+)特征的黄绿色光。一定量的Ba~(2+)共掺杂可以有效地提高YPO4∶1%Tb~(3+)样品的荧光性能,但过量(高于10%)的Ba~(2+)掺杂又会导致Tb~(3+)的荧光猝灭现象出现,最佳的Ba~(2+)共掺杂量为10%。所制备的YPO4∶1%Tb~(3+),10%Ba~(2+)样品在225nm紫外光激发下位于545nm处的发射带强度是YPO4∶1%Tb~(3+)样品的1.8倍。  相似文献   

11.
溶胶-凝胶法合成Y3Al5O12:Ce3+,Tb3+稀土荧光粉的研究   总被引:6,自引:0,他引:6  
采用溶胶-凝胶法在低温下合成了Y3Al5O12:0.08Ce^3 ,0.12Tb^3 稀土荧光粉。通过X射线衍射(XRD)分析及激发、发射光谱测试结果表明:合成的粉末为YAG晶体结构,粉体的最大激发峰为273nm,最大发射峰为545nm,色坐标为:x=0.331,y=0.558,在273nm的紫外光激发下发出明亮的绿光。  相似文献   

12.
按照零场分裂(ZFS)的三阶微扰理论和叠加晶场模型,建立了ZFS参量D与CsCdF3:Cr^3+晶格结构之间的定量关系,同时考虑了晶格畸变和Cd^2+空位对零场分裂参量D的贡献,计算了CsCdF3:Cr^3+晶体的零场分裂参量D,计算结果与实验符合甚好,证明了晶格畸变和Cd^2+空位的存在,同时得到r^3+离子的F^-离子向中心Cr^3+离子分别移动X1=0.00291nm,X2=0.001nm,  相似文献   

13.
采用固相法制备了LiCaBO3∶Dy3+发光材料. 材料的发射光谱为一多峰宽谱, 主峰分别为484、577和668nm; 监测577nm发射峰, 对应的激发光谱为一主峰位于331、368、397、433、462和478nm的宽谱. 研究了Dy3+浓度对材料发射光谱及发光强度的影响, 结果随Dy3+浓度的增大, 材料的黄、蓝发射峰强度比(Y/B)逐渐增大; 同时, 发光强度呈现先增大后减小的趋势, 最大值对应的Dy3+浓度为3.00mol%, 其浓度猝灭机理为电偶极电偶极相互作用. 引入Li+、Na+或K+可增强材料的发射强度. InGaN管芯激发下的LiCaBO3∶Dy3+材料呈现很好的白光发射, 色坐标为x=0.3001, y=0.3152.  相似文献   

14.
为了合成单相以及Yb3+、 Er3+掺杂的六方结构NaYF4,采用微波水热的方法,以稀土硝酸盐、氟化钠、柠檬酸、氢氧化钠、乙酸乙酯和水为原料,合成了六方相NaYF4以及Yb3+、Er3+掺杂的六方相NaYF4 (NaYF4∶Yb3+,Er3+)微米管. 利用XRD、SEM对所得样品的物相和形貌进行了表征. 研究了不同反应条件对产物形貌和物相的影响,并提出了NaYF4微米管的形成机理. 研究发现,采用微波加热的方法可以在较低的温度下快速得到单一六方相的NaYF4. 所制备的Yb3+、 Er3+掺杂NaYF4微米管的上转换发光性能与其体材料类似,具有较高的发光强度.  相似文献   

15.
Yb2O3的掺杂方式对Ba(Ti1-y)Zry)O3陶瓷介电性能的影响   总被引:2,自引:0,他引:2  
在Ba(Ti1-yZry)O3中,Yb2O3的不同掺杂方式引起了材料性能的显著变化,采用Ba(Ti1-yZry)O3合成后Yb2O3的适量掺杂,陶瓷介温峰明显地移动,介电常数大幅度提高,获得了室温介电常数>25000,1250℃左右烧成,符合Y5V标准的高介材料,合成后掺杂的Yb2O3,使材料介电常数提高,可能与施主掺杂引入的局域化电子有关,合成前掺杂Yb2O3的样品,介电常数较低,移峰效率偏小,可能是Yb的Ti位受主取代使施主引入的局域化电子得到补偿的结果。  相似文献   

16.
以φ3mm Al2O3作为主载体,采用浸渍与焙烧工艺,制备水煤气低温变换催化剂:CuO+ZnO/CeO2/Al2O3.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、Raman散射光谱分别对催化剂的化学组成、表面形貌以及表面元素键合状态进行表征;对催化剂的水煤气变换反应(WGSR)活性进行测试.在对催化剂表面形貌进行数据挖掘的基础上,利用复杂网络方法对催化剂的表面形貌进行网络建模,并对其网络拓扑参数和同步性进行了计算.计算结果表明,CuO+ZnO/CeO2/Al2O3表面形貌网络度分布具有幂律分布特征;在催化WGSR以后,催化剂表面形貌网络同步性有所增强.  相似文献   

17.
金红石TiO2基质中[MoO4]2-基团的上转换发光   总被引:1,自引:0,他引:1  
在978nm激光二极管的激发下,Mo掺杂的TiO2材料表现出很强的宽带上转换发光,该发光来源于[MoO4]^2-基团的激发态3T1,3T2能级到基态1Al能级的电子跃迁.X射线衍射表明样品为金红石单一相,红外吸收光谱证实了[MoO4]2-的存在.由光电子能谱推测体系中还含有低价态的Mo离子,它们提供了上转换得以进行的中间态.高温下的氧化还原处理会改变低价Mo的数量,从而严重影响样品的发光行为。  相似文献   

18.
以Mn3O4为前驱体的LiMn2O4及其电化学性能   总被引:11,自引:0,他引:11  
对传统的固相反应进行了改进,以控制结晶法合成出来的Mn3O4为前驱体,和LiOH混合煅烧,制备出锂离子电池正极活性材料尖晶石LiMn2O4。对由此方法得到的尖晶石LiMn2O4的结构和电化学性能进行了研究。通过X线光衍射和扫描电镜分析表明,该材料为纯相尖晶石LiMn2O4,不含其它杂质相,而且晶粒大小比较均匀;通过电化学性能测试表明,该尖晶石LiMn2O4具有良好的电化学性能:其首次放电比容量为128mAh/g,经过10次充放电循环后,其放电比容量仍有124mAh/g。  相似文献   

19.
Ti/SnO2+Sb2O3+MnO2/PbO2阳极的性能研究   总被引:10,自引:0,他引:10  
制备了一种非贵金属阳极-Ti/SnO2 Sb2O3 MnO2/PbO2,并用XRD、SEM进行了表征,计算出了电极的分形维数,测定了该电极在硫酸中的使用寿命和动力学参数,把该电极用于处理含酚废水和Pb电极进行对,结果表明,节电33%,转化率达95%,是一种优良的电化学催化剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号