首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Aqueous solution properties of polyethylene oxide–block-polypropylene oxide–block-polyethylene oxide TBP [(PEO)103(PPO)39(PEO)103] were studied in the presence of sodium salts with different anions (NaI, NaBr, NaCl, NaF, Na2SO4, Na3PO4) to investigate unimer-to-micelle transition [critical micelle concentration (CMC), critical micellization temperature (CMT)], micelle size and the phase separation (cloud point). This TBP, due to its very hydrophilic (80% PEO) nature does not form micelles at ambient temperatures. Micellization can be induced much below its CMT in water on addition of sodium salts having different anions. Analytical methods viz. fluorescence, FTIR and dynamic light scattering (DLS) were used to monitor the salt-induced micellization. The hydration of respective anion and resultant contribution to its salting-out effect was found to be the governing factor in promoting micellization. The presence of salt decreases the CMC, CMT and phase separation temperature. The salts affect the aggregation process in agreement with an order mentioned in Hofmeister series.  相似文献   

2.
The aqueous solution behavior of a PEO–PPO–PEO block copolymer (EO103PO39EO103), was investigated in the presence of aliphatic alkanols (C2, C4, C6 and C8). The non-associated polymer chains remain extremely hydrated in water, but aggregation in the form of spherical micelles was evidenced, triggered by the interaction of polymer chains with hydrophobic alkanol. We assume that the hydrophobic interaction between the PPO block of the copolymer and alkanol promotes micellization, which increases further with the introduction of higher chain length species. The critical micellization temperature (CMT), as measured by UV–visible spectroscopy, indicates an interaction of polymer chains with the alkanol bearing a higher chain length, which triggers aggregation. The micelles were characterized by small angle neutron scattering to elucidate the size and related micellar parameters. The gradual increase in the alkanol content increases the aggregation number, though the micelles were spherical in shape. We conclude that ethanol, due to its preferential solubility in the aqueous phase, does not affect the aggregation. The alkanols with chain lengths of C4–C8 chain, interact with the PPO block through hydrophobic interaction and shifts the CMTs to lower values. The combined effect of inorganic salt (NaCl) and alkanols show enhanced micellar properties.  相似文献   

3.
Aqueous solutions of a blend consisting of a PEO-PPO-PEO triblock copolymer, Pluronic F127 (EO100-PO65-EO100) and a PPO-PEO-PPO triblock copolymer, Pluronic-R 25R4 (PO19-EO33-PO19) were studied. Thermoreversible micellization and gelation properties of the blend were examined as a function of temperature and molar ratio of 25R4 to F127 by means of micro DSC and rheology. The completely thermoreversible behaviors of micellization and gelation were observed for all the blend solutions with two F127 concentrations (10 and 15 wt%) and various 25R4/F127 molar ratios (0-4) even though the pure 25R4 solution itself was not thermoreversible. At a given concentration of F127, three effects of 25R4 on F127 were found as follows. (a) The micellization temperature of F127 shifts to a lower temperature with increasing 25R4 content, implying a “salt-out like” effect of 25R4. (b) Beyond the primary peak for micellization a secondary peak appears due to the effect of 25R4. (c) At the molar ratio of 25R4/F127 = 3:1, the gelation of the 15 wt% F127 solution occurs twice at low and high temperatures, respectively. When the ratio > 3:1, the gelation occurs only at high temperatures. The possible mechanisms involved in these unique behaviors of micellization and gelation have been proposed and discussed. The effect of 25R4 on F127 was compared with another Pluronic polymer F108 (EO133-PO50-EO133).  相似文献   

4.
The volatility behavior of perfume compounds in poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) copolymer was investigated by means of dynamic and static headspace analyses. Suppression of the volatility of perfume compounds by EO105PO27EO105 copolymer was markedly greater than by polyethyleneglycol. This suppressive effect may be due to micelle and gel formation of EO105PO27EO105 copolymer. EO105PO27EO105 copolymer is expected to be useful as a novel sustained-release carrier that maintains constant release rates for the volatility of perfume compounds over a wide temperature range.  相似文献   

5.
Hydrophobically modified polymers were synthesized via esterification reactions between a commercial triblock copolymer composed of ethylene oxide (EO) and propylene oxide (PO) segments (EO20PO70EO20) and lauric and oleic acids. Rheological studies of aqueous systems containing the original copolymer and the synthesized products were performed to evaluate the effects of chemical modification, the presence of salt, and temperature on the rheology of the systems due to changes in the micellar structures. It was verified that the systems containing the synthesized products presented shear‐thinning behavior even in the absence of salt. In addition, increasing the temperature and salt concentration enhanced the hydrophobic character of the poly(propylene oxide) segment and reduced the hydration of the poly(ethylene oxide) segment; this favored the adequate packing needed to form long, wormlike micelles and resulted in pronounced shear thinning. The formation of a complex micelle structure probably occurred in the systems above the critical micellar temperature of the original copolymer because under this condition the molecules presented three alternate hydrophobic segments that had to dive into the micelle structure. The formation of long, wormlike micelles was also evidenced by the Maxwellian behavior observed in rheological oscillatory measurements. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
In order to determine the structure‐performance relationship of nonionic‐zwitterionic hybrid surfactants, N,N‐dimethyl‐N‐dodecyl polyoxyethylene (n) amine oxides (C12EOnAO) with different polyoxyethylene lengths (EOn, n = 1–4) were synthesized. For homologous C12EOnAO, it was observed that the critical micelle concentration (CMC), the maximum surface excess (Γm), CMC/C20, and the critical micelle aggregation number (Nm,c) decreased on going from 1 to 4 in EOn. However, there were concomitant increases in surface tension at the CMC (γCMC), minimum molecular cross‐sectional area (Amin), adsorption efficiency (pC20), and the polarity ([I1/I3]m) based on the locus of solubilization for pyrene. The values of log CMC and Nm,c decreased linearly with EOn lengthening from 1 to 4, although the impact of each EO unit on the CMC of C12EOnAO (n = 1–4) was much smaller than that typically seen for methylene units in the hydrophobic main chains of traditional surfactants. Compared to the structurally related conventional surfactant N,N‐dimethyl‐N‐dodecyl amine oxide (C12AO), C12EOnAO (n = 1–4) have smaller CMC, Amin, and CMC/C20, but larger pC20, Γm, and Nm,c with a higher [I1/I3]m. This may be attributed to the moderately amphiphilic EOn (n = 1–4) between the hydrophobic C12 tail and the hydrophilic AO head group.  相似文献   

7.
The linear alkylated diphenylmethane sulfonate (C12‐DSDM) was synthesized by a four‐step reaction with lauric acid, diphenylmethane and chlorosulfonic acid as raw materials. The structure of the final product was characterized by MS. The air–liquid surface tensions at various temperatures and salt solutions (NaCl) were measured by using the drop‐volume technique and the thermodynamic parameters of the micellization were calculated. The results show that the critical micelle concentration (CMC) and γCMC of the surfactant are 1.452 mmol L?1 and 38.49 mN m?1 at 298 K. With an increase in temperature, the CMC gradually increases, the γCMC and the maximum surface adsorption capacity Γmax decrease. The free energy of micelle formation is negative (?51.2 to ?60.5 kJ mol?1).  相似文献   

8.
The EO20PO70EO20 (molecular weight 5800) amphiphile as a template is to form dispersed micelle structures. Silver nanoparticles, as inorganic precursors synthesized by a laser ablation method in pure water, are able to produce the highly ordered vesicles detected by TEM micrography. The thickness of the outer layer of a micelle, formed by the silver nanoparticles interacting preferentially with the more hydrophilic EO20 block, was around 3.5 nm. The vesicular structure ensembled from micelles is due to proceeding to the mixture of cubic and hexagonal phases.  相似文献   

9.
Surface tension as a function of concentration and temperature was measured for solutions of N-acyl sarcosinates, RCON(CH3)CH2COONa. From the intersection points in the (γ-log c) curves, the critical micelle concentration (CMC) was determined at 20, 35, 50, and 65°C. Structural effects on the CMC, maximum surface excess, and the minimum area per molecule at the aqueous solution/air interface are discussed. The free energy, enthalpy, and entropy of micellization and adsorption of surfactant solutions also were investigated.  相似文献   

10.
Conductometric and cloud point (CP) measurement studies have been performed to investigate the interaction of tetradecyltrimethylammonium bromide (TTAB) and Triton® X-100 (TX-100) with ciprofloxacin hydrochloride (CFH) in different solvents over the temperature range of 295.15–315.15 K. CFH is used for the treatment of various bacterial infections. The observed critical micelle concentration (CMC) values of TTAB were found to be reduced in the presence of electrolytes (Na2SO4/Na3PO4), and this reduction proceeds with the elevation of salt concentration. The order of the CMC of TTAB follows the trend: > >. The observed CMC values of TTAB were found to increase with increasing temperature and decrease with increasing concentration of CFH in aqueous medium. The values of Gibbs free energy of micellization () for the TTAB/TTAB + CFH mixture were found to be negative, implying spontaneous micellization. The estimated CP of TX-100 decreases with increasing concentration of TX-100 in aqueous medium. The CP values first decrease with increasing concentration of CFH and then increase at higher concentration of CFH almost in all cases investigated. The values of free energy of clouding were found to be positive in all cases studied implying that phase separation of TX-100 was nonspontaneous. The other thermodynamic parameters associated with the micellization of TTAB and the phase separation of TX-100 were estimated and explained.  相似文献   

11.
The synergistic behavior of sodium dodecylbenzene sulfonate (SDBS) with poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymer was studied using surface tension measurements. The surface tension of single and mixed solutions of SDBS and the block copolymer in this study was measured at different concentrations and at 25 °C. The critical micelle concentration (CMC) of these solutions was determined from the surface tension measurements. The SDBS gives higher CMC values than those of the block copolymer. The results show that the CMC value of SDBS decreases as the molar ratio of SDBS increases in the mixture solution with the block copolymer. The surface parameters of adsorption and micellization for single and mixed solutions were investigated. The results show that the surface and micellization properties of SDBS were improved as a result of mixing with the block copolymer. The mole fractions in the micelles and interaction parameters of the mixed solutions were calculated. The foam stability of single and mixed solutions at 25 °C was determined. The results show that the SDBS has more foam stability than the block copolymer and the foam stability increases as the molar ratio of SDBS increase in mixed solution of it with block copolymer.
E. M. S. AzzamEmail:
  相似文献   

12.
Polyethylene oxide –b– polypropylene oxide -b- polyethylene oxide (EO106PO70EO106) block copolymer self-organizes into polymeric supramolecules, characterized by NMR as phase transition from the isotropic stack-up block structure to the ordered cubic polymeric supramolecular structure. Its dependence on both temperature and copolymer concentration is clearly shown by the changes in line shape and chemical shift of the PO70 block β, γ resonances.  相似文献   

13.
Synthesis and Properties of Novel Alkyl Sulfonate Gemini Surfactants   总被引:2,自引:0,他引:2  
A series of novel dialkyl disulfonate gemini surfactants (2Cn-SCT where n is the carbon number of the hydrophobic chain) were synthesized from cyanuric chloride, aliphatic amine and taurine. The chemical structures of the prepared compounds were confirmed by 1H NMR, 13C NMR, IR spectra, and ESI–MS. Their critical micelle concentrations (CMC) in the aqueous solutions at 25 °C were determined by surface tension and electrical conductivity methods. With the increasing length of the carbon chain, the values of their CMC initially decreased, and then increased with an alkyl chain length of 14. The surface tension measurements of 2Cn-SCT (except for n = 14) determined that there is a low CMC, a great efficiency in lowering the surface tension, and a strong adsorption at the air–water interface. In addition, adsorption and micellization behavior of 2Cn-SCT were estimated from pC 20, the minimum average area per surfactant molecule (A min), and standard free energy micellization and adsorption ( \Updelta G\textmic°  \textand \Updelta G\textads° \Updelta G_{\text{mic}}^{^\circ } \,{\text{and}}\,\Updelta G_{\text{ads}}^{^\circ } ). These properties are significantly influenced by the chain length n, and the adsorption is promoted more than the micellization.  相似文献   

14.
Ethylolamides of animal (beef and mutton) fats have been synthesized and modified with H3PO4. The identity of these products was confirmed by IR and NMR spectroscopy. The physical properties of the synthesized surfactants including interfacial tension and critical micelle concentration (CMC) were studied. From these measurements, the maximum surface excess concentration and the minimum area per molecule at the kerosene solution/water interface, the surface pressure at the CMC, and the standard thermodynamic parameters of adsorption and micellization were calculated. Ethylolamides and ethylolamide phosphates were obtained and tested as petroleum-collecting and petroleum-dispersing reagents. Some correlations between these parameters of the ethylol units and their ability to collect thin petroleum films from the water surface were revealed.  相似文献   

15.
The present work explored the molecular implications governing the solubilization of a model drug nimesulide (NIM) in micelles of ethylene oxide-propylene oxide (EO–PO) triblock copolymers. The aggregation behavior and solubilization studies on four copolymers each with the same mol mass of central PPO block equal to 2,250 and varying % PEO was examined by means of UV–VIS. Moreover, high-sensitivity differential scanning calorimetry, and Fourier transform infrared spectrometry measurements were used to evaluate the critical micellization temperature. The solubilization at different temperatures (30, 37, 45 °C), pH (2 to 10) and in the presence of added sodium chloride (0–2 M) was monitored and the partition coefficient (P) and the free energy of solubilization (ΔG so) were calculated. The site of solubilization of NIM in micelles was also probed. The NIM solubility decreased with increases in the PEO molecular weight; the drug resides in the micelle core.  相似文献   

16.
An empirical correlation is presented for the estimation of critical micellization concentrations (CMC) and critical micellization temperatures (CMT) for poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers in aqueous solutions. The CMC and CMT are expressed as a function of the polyol molecular weight, composition, and temperature (for CMC determination) or concentration (in the case of CMT). The correlation was developed from experimental CMT data for a set of 12 polyols that covered a wide range of molecular weights (2900–14600) and poly(ethylene oxide) contents (30–80 wt%) and is based on a simple expression for the standard free energy of micellization. Such a correlation should be useful to practitioners of the field as it allows easy prediction of CMC and CMT for a wide range of polyols with a minimal number of input parameters.  相似文献   

17.
Micellization of four cationic quaternary ammonium gemini surfactants, having a diethyl ether or hexyl spacer with the alkyl chain lengths of 12 and 16 carbon atoms, was studied using isothermal titration microcalorimetry (ITC) and electrical conductivity measurements in the temperature range from 298.15 to 313.15 K. In this temperature range, where surfactants are normally applied, the temperature almost does not influence the critical micelle concentration (CMC) and the degree of micelle ionization (α) values of the gemini surfactants, and the replacement of a hexyl spacer by a diethyl ether spacer leads to a slight decrease in the CMC and α values. However, as the alkyl chain length increases from 12 to 16 carbon atoms, the CMC values significantly decrease from 0.99–1.19 mM to 0.020–0.057 mM. In particular, the enthalpy of micellization (ΔHmic ) and the associated thermodynamic parameters show obvious changes with varying temperature and molecular structure. ΔHmic becomes much more exothermic at higher temperature or for the surfactants with a more hydrophilic spacer. Moreover, the heat capacity change of micellization (ΔC P, mic ) is less exothermic for the surfactants with a more hydrophilic spacer or a longer alkyl chain. The enthalpy–entropy compensation data show that the surfactants with longer alkyl chains have a more stable micellar structure.  相似文献   

18.
Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.  相似文献   

19.
Lysozyme partitioning in EO50PO50/potassium phosphate aqueous two-phase systems (ATPS) was studied. In the work, the influence of EO50PO50, potassium phosphate and sodium chloride concentration in the ATPS on lysozyme partition coefficient and separation yield was examined. In addition, the influence of the pH of potassium phosphate solution was also investigated. A Box–Behnken design was defined, and response surface models for the partition coefficient K and percentage yield of the enzyme in the top phase Y were calculated. Among the examined factors, the NaCl concentration had the highest influence on lysozyme separation parameters. This influence can be explained mainly by the hydrophobic interactions between the protein and the phase-forming components. A maximum partition coefficient KL1, yield YL1 and YL2 were predicted for EO50PO50, potassium phosphate and NaCl concentrations of 17.40, 22.67% and 0.85 mol/l, respectively, and for pH 9.0. A good agreement was obtained between the experimental and the predicted results.  相似文献   

20.
In toluene/dimethoxyethane (80/20)v solution, copolymers containing 11, 33, and 51 mol% of oxyethylene residues and having a fixed PS-segment molecular weight of ~60,000 g/mol, are dissolved molecularly. Doping with 10, 20, and 50 mol% of H3PO4 based on the oxyethylene content, induces varying degrees, of micellization in the respective block copolymer solutions. Light scattering and viscometry were used to evaluate the relationship between block-copolymer composition and the state of aggregation for solutions of styrene/ethylene oxide block copolymers as a function of solution concentration and level of doping with phosphoric acid. Specifically, diffusion coefficients, hydrodynamic radii, and critical micelle concentration were evaluated by dynamic light scattering. Radii of gyration were obtained by complementary static light scattering measurements. In all three block copolymers, complete micellization is realized at the 50 mol% H3PO4 doping level. At the 20 mol% H3PO4 doping level, complete micellization is induced with the copolymers containing 11 and 33 mol% of oxyethylene residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号