首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase diagrams of α-sulfonate methyl ester derived from palm stearin (α-SMEPS)/alcohol/water systems were mapped at 30±0.1°C. Two main regions—an isotropic and a lamellar liquid crystalline—were the focal points in this system. An increase in alcohol chain length decreased the isotropic region and increased the lamellar liquid crystal region. In the isotropic region, self-assembly of α-SMEPS at different alcohol chain lengths was determined by using conductivity and viscosity measurements. The phase boundaries of micelle to bicontinuous structure and bicontinuous structure to inverse micelle transitions in the isotropic regions are proposed from these analytical methods. The increase in alcohol chain length shifted the micelle ⇆ bicontinuous structure to the water-rich corner, and the bicontinuous structure ⇆ inverse micelle transition moved toward the alcohol-rich corner.  相似文献   

2.
Blend PES/CA hydrophilic membranes were prepared via a phase-inversion process for oil–water separation. PEG-400 was introduced into the polymer solution in order to enhance phase-inversion and produce high permeability membranes. A gas permeation test was conducted to estimate mean pore size and surface porosity of the membranes. The membranes were characterized in terms of morphology, overall porosity, water contact angle, water flux and hydraulic resistance. A cross-flow separation system was used to evaluate oil–water separation performance of the membranes. From FESEM examination, the prepared PES/CA membrane presented thinner outer skin layer, higher surface porosity with larger pore sizes. The outer surface water contact angle of the prepared membrane significantly decreased when CA was added into the polymer solution. The higher water flux of the PES/CA membrane was related to the higher hydrophilicity and larger pore sizes of the membrane. From oil–water separation test, the PES/CA membrane showed stable oil rejection of 88 % and water flux of 27 l/m2 s after 150 min of the operation. In conclusion, by controlling fabrication parameters a developed membrane structure with high hydrophilicity, high surface porosity and low resistance can be achieved to improve oil rejection and water productivity.  相似文献   

3.
A facile, efficient and substrate-selective oxidation of the primary amines with NaClO as oxidant catalyzed by β-cyclodextrin (β-CD) has been developed in water for the first time, and the behavior of β-cyclodextrin that catalyzed the primary amines to nitriles in water was investigated. It was found that the primary amines which could form host-guest complexes with β-cyclodextrin were oxidized to nitriles with excellent yields at ambient temperature. The results show that β-cyclodextrin worked not only as a solubilizing agent but also as a catalyst in these reactions.  相似文献   

4.
5.
《Electrochimica acta》1987,32(6):927-934
The corrosion and passivation of Type 304 SS and of the amorphous alloys Fe-10Cr-13B-7C and -13P-7B, respectively, have been studied by polarization curves and impedance spectroscopy in deaerated ethanolic/0.5 N HCl solutions with different water contents. For stainless steel and the 13B-7C amorphous alloy, the same passivation mechanism is effective as in aqueous media. The water molecules are directly involved in the formation of the passive film. The alloy with 13% phosphorus appears to show two separate regions of film formation: at low potentials, a thick, porous and less protective film is formed than at more noble potentials. The synergistic interaction of chromium, water and metalloids in film formation may be explained with the concept of charge/size ratio of the different dissolution products.  相似文献   

6.
It has been over 250 years since Benjamin Franklin, fascinated with the wave-stilling effect of oil on water, performed his famous oil-drop experiments; nevertheless, the behavior of water molecules adjacent to hydrophobic surfaces continues to fascinate today. In the 18th century, the calming of the seas seemed the most pertinent application of such knowledge; today, we understand that oil-on-water phenomena underlie a range of important chemical, physical, and biological processes, including micelle and membrane formation, protein folding, chemical separation, oil extraction, nanoparticle formation, and interfacial polymerization. Beyond classical experiments of the oil-water interface, recent interest has focused on deriving a molecular-level picture of this interface or, more generally, of water molecules positioned next to any hydrophobic surface. This Account summarizes more than a decade's work from our laboratories aimed at understanding the nature of the hydrogen bonding occurring between water and a series of organic liquids in contact. Although the common perception is that water molecules and oil molecules positioned at the interface between the immiscible liquids want nothing to do with one another, we have found that weak interactions between these hydrophilic and hydrophobic molecules lead to interesting interfacial behavior, including highly oriented water molecules and layering of the organic medium that extends several molecular layers deep into the bulk organic liquid. For some organic liquids, penetration of oriented water into the organic layer is also apparent, facilitated by molecular interactions established at the molecularly thin region of first contact between the two liquids. The studies involve a combined experimental and computational approach. The primary experimental tool that we have used is vibrational sum frequency spectroscopy (VSFS), a powerful surface-specific vibrational spectroscopic method for measuring the molecular structures of aqueous surfaces. We have compared the results of these spectroscopic studies with our calculated VSF spectra derived from population densities and orientational distributions determined through molecular dynamics (MD) simulations. This combination of experiment and theory provides a powerful opportunity to advance our understanding of molecular processes at aqueous interfaces while also allowing us to test the validity of various molecular models commonly used to describe molecular structure and interactions at such interfaces.  相似文献   

7.
In this research, the deformation of water droplets in sunflower oil-interface under pulsatile electric field was studied experimentally. Three types of coalescence were observed:(i) complete coalescence, (ii) incomplete coalescence and (iii) no-coalescence. The first type is desirable because of leaving no secondary droplets. The second type that produced secondary droplets which caused by necking process, due to extreme elongation of droplets (mostly small droplets), was undesirable; because the small droplets were more difficult to coalesce and remove. The no-coalescence was caused by very fast coalescence and extensive pushing of droplet into the continuous phase. In this work the process was operated with the utilization of a batch cylindrical separator with high voltage system. The lower part of the cylinder was filled with the aqueous phase and its top part was filled with sunflower oil to form an interface between the two phases. The effects of electric field strength, frequency, and waveform types were investigated. It was found that, the ramp-ac waveform was the best waveform, avoiding the production of secondary droplets and in this case the frequency also played an important role.  相似文献   

8.
Promising methods for decreasing anthropogenic emissions due to the combustion of coals of different ranks and coal–water fuel (CWF) and organic coal–water fuel (OCWF) slurries on their basis are considered. The maximum concentrations of the main anthropogenic emissions of sulfur, nitrogen, and carbon oxides (SO x , NO x , and CO x ) formed upon the combustion of solid fuels in a powdered state and as the components of CWF and OCWF slurries were determined. The concentrations of the most hazardous oxides formed upon the combustion of coals of different ranks (brown and black coals) and CWF and OCWF slurries were compared. The experimental results substantiated the use of CWF and OCWF slurries for emission control in coal-burning power engineering. The addition of a combustible liquid component to a CWF slurry (the production of an OCWF slurry) makes it possible to ensure acceptable environmental and energy characteristics.  相似文献   

9.
10.
Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and dur...  相似文献   

11.
The structural and physical behavior of water in the temperature range from 0 to 35‡C was examined. The possible enantiotropic mechanism of formation of two morphological modifications of (H2O)8 clusters at 0‡C (dimorphism of water) was demonstrated: liquid phase — body-centered cubic packing of the water molecules (bcc packing), ice — double tetrahedral (diamond) packing. The partial density of ice clusters at 0‡C is equal to 838 g/liter, and the maximum density of water is observed when (H2O)6 clusters predominate in the water. Translated fromKhimicheskie Volokna, No. 6. pp. 44–46, November–December, 1998.  相似文献   

12.
Water-soluble iron sulfate/sulfur-catalyzed coal liquefaction using three kinds of hydrogen sources including syngas–water has been investigated. The liquefaction of Wandoan coal, an Australian subbituminous, with iron sulfate/sulfur as a catalyst precursor using syngas–water or carbon monoxide–water afforded higher coal conversions and oil yields than those using pressurized hydrogen gas. The pretreatment at relatively low temperature (200°C) was indispensable to achieve the high coal conversion. In the two-staged liquefaction (400°C, 60 min+425°C, 60 min), the use of syngas–water as a hydrogen source afforded higher coal conversion of 90.1% together with a high oil yield of 46.2% than those using pure hydrogen, and almost comparable to those using carbon monoxide–water, indicating the presence of synergistic effects of two hydrogen sources. At the early stage of the reaction, the contribution of carbon monoxide–water was predominant, whereas hydrogen gas significantly took effect at the latter stage. The XRD and XPS study revealed the formation of pyrrhotite, a possible active species, covered with a small amount of sulfate species.  相似文献   

13.
Surfactants in water and both alcohol-water mixed solutions are used extensively in a host of industrial applications. This work presents the solution behavior and micellar transition of a cationic gemini surfactant (GS): N,N′-dihexadecyl-N,N,N′,N′-tetramethyl-N,N′-ethanediyl-diammonium dibromide (16-2-16) in water and mixed water-ethanol media. Phase behavior for 16-2-16 in the ethanol–water system was investigated at ambient temperature. The rheological data obtained for these systems at varying alcohol concentrations showed that the system viscosity (η) decreased with as the ethanol concentration increased. Small-angle neutron scattering (SANS) was used to probe the structural details of the cationic micelles as a function of ethanol concentration and temperature. The scattering data inferred a structural transition from unilamellar vesicles (ULV) through rod-like micelles to ellipsoidal micelles occurs that is dependent on the solvent composition and temperature indicating the behavior of ethanol molecules as a cosolvent in the process of micelle breaking. The plausible physicochemical interactions in the 16-2-16-ethanol mixed system were further investigated using a computational simulation study employing density functional theory (DFT)/B3LYP (Gauss View 5.0.9) utilizing a 3-21G basis set.  相似文献   

14.
15.
To investigate the characteristics of hydrate formation in oil–water systems, a high-pressure cell equipped with visual windows was used where a series of hydrate formation experiments were performed from natural gas + diesel oil + water systems at different water cuts and anti-agglomerant concentrations. According to the temperature and pressure profiles in test experiments, the processes of hydrate formation under two kinds of experimental procedures were analyzed first. Then, based on the experimental phenomena observed through the visual windows, the influences of water cut and anti-agglomerant on the places of hydrate formation and distribution, hydrate morphologies and hydrate morphological evolvements were investigated. Hydrate agglomeration, hydrate deposition and hydrate film growth on the wall were observed in experiments. Furthermore, three different mechanisms for hydrate film growth on the wall were identified. In addition, the influences of water cut and anti-agglomerant on the induction time of hydrate formation were also studied.  相似文献   

16.
Whereas the π-π stacking interactions at oil/water interfaces can affect interfacial structures hence the interfacial properties,the underlying microscopic mechanism remains largely unknown.We reported an all-atom molecular dynamics(MD) simulation study to demonstrate how the Gemini surfactants with pyrenyl groups affect the interracial properties,structural conformations,and the motion of molecules in the water/n-octane/surfactant ternary systems.It is found that the pyrenyl groups tend to be v...  相似文献   

17.
Y3Al5O12(YAG)/Al2O3 long fibres were prepared by a sol–gel method using water as the solvent. They were synthesized from aluminium nitrate and chloride solutions, aluminium salt, aluminium metal and Y2O3. The starting materials were dissolved by refluxing at 100°C for 2–18 h and were then condensed. The fibre spinnability was examined by a hand drawing method using a glass rod. In the nitrate solution system, the composition range available for fibre preparation was very limited because nitrate ions decomposed during the refluxing, raising the solution pH and precipitating the Y component. On the other hand, the composition range of the fibres prepared from the chloride system was 0/10⩽YAG/Al2O3⩽6/4 (volume ratio) and was wider than that from the nitrate system. The YAG/Al2O3 fibres prepared by firing at 1300°C became denser with faster heating rates. The grain size in the fired fibres was small, below the firing temperature at 1400°C, but increased greatly above that temperature.  相似文献   

18.
19.
C/SiC composites with different additives (ZrO2 and ZrB2) were fabricated by CVI and CVD and their oxidation and ablation properties at 1700–1800 °C were investigated. Two different ablation test conditions, dry air and air mixed with water vapor, are compared. The ablation test results are reviewed, the weight loss rates are presented and the corresponding micro-structures are investigated in detail. The results show that in dry air, the weight loss rate of C/SiC composites is greater than those with ZrO2 and ZrB2 additives. However, in air mixed with water vapor (5 wt%) to simulate the hygrothermal condition, the weight loss rates of these three composites all become relatively smaller. A model is proposed to predict the weight loss of C/SiC composites and it agrees well with the experimental data.  相似文献   

20.
《Electrochimica acta》1985,30(4):541-549
Equivalent conductances of [Cu(en)2]X2 and [Ni(en)3]X2 (X = Cl, Br and I) solutions in both water and dioxane—water mixtures at 25°C were measured in different compositions covering the range 0.00—53.00 wt.%. The data were analysed using the Fuoss—Edelson method to obtain the limiting equivalent conductance Λ0 and the association constant KA simultaneously. The distance of closest approach a0 was calculated using Stokes' equation and related to KA. In water, it was found that the limiting cationic conductance decreases with the decrease of the cationic size, and the values of the association constant KA indicate incomplete dissociation of complexes in water and unremarkable change of KA with the change of the counter anion. But in dioxane—water mixtures, it was found that the limiting cationic conductance is directly proportional to the dielectric constant D, while the association constant KA is inversly proportional to it, except at low dioxane content for the complexes [Cu(en)2]Br2, [Ni(en)3]Cl2 and [Ni(en)3]Br2. Where KA reaches a minimum value at 15.72, 11.93 and 5.14 dioxane wt.% respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号