首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, space‐time block coding has been used in conjunction with Turbo codes to provide good diversity and coding gains. A new method of dividing turbo encoder and decoder into several parallel encoding and decoding blocks is considered. These blocks work simultaneously and yield a faster coding scheme in comparison to classical Turbo codes. The system concatenates fast Turbo coding as an outer code with Alamouti's G2 space‐time block coding scheme as an inner code, achieving benefits associated with both techniques including acceptable diversity and coding gain as well as short coding delay. In this paper, fast fading Rayleigh and Rician channels are considered for discussion. For Rayleigh fading channels, a fixed frame size and channel memory length of 5000 and 10, respectively, the coding gain is 7.5 dB and bit error rate (BER) of 10?4 is achieved at 7 dB. For the same frame size and channel memory length, Rician fading channel yields the same BER at about 4.5 dB. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A discrete approach to multiple tone modulation is developed for digital communication channels with arbitrary intersymbol interference (ISI) and additive Gaussian noise. Multiple tone modulation is achieved through the concatenation of a finite block length modulator based on discrete Fourier transform (DFT) code vectors, and high gain coset or trellis codes. Symbol blocks from an inverse DFT (IDFT) are cyclically extended to generate ISI-free channel-output symbols that decompose the channel into a group of orthogonal and independent parallel subchannels. Asymptotic performance of this system is derived, and examples of asymptotic and finite block length coding gain performance for several channels are evaluated at different values of bits per sample. This discrete multiple tone technique is linear in both the modulation and the demodulation, and is free from the effects of error propagation that often afflict systems employing bandwidth-optimized decision feedback plus coset codes  相似文献   

3.
The case in which there are several channels available for transmission, and the additive noise on each channel may have different power, is treated. A signal constellation, called the coordinated code, for the signal space formed by the different channels is presented. The coordinated code has good performance when the noise powers are equal, while simultaneously providing diversity for good performance when the noise powers are unequal, and is relatively simple. The maximum-likelihood receiver is presented; it extracts information from the coded signal in inverse proportion to each channel's noise power. The minimum distance of the code is found, and the coding gain over a system that transmits independent bit streams on each channel is derived as a function of the noise statistics. The gain of the code is also found relative to symbol splitting diversity, which transmits a copy of the same message on each channel; this gain is as high as 9 dB. The code is considered in detail for use with a high rate digital subscriber line (HDSL) comprised of two pairs of a local loop, each pair having different amounts of near end crosstalk (NEXT)  相似文献   

4.
In this paper, the closed loop transmit diversity technology for the Wideband Code Division Multiple Access(WCDMA) systems is investigated in a multipath Rayleigh fading channel. The RAKE receiver model and the weighing vector algorithm are presented. The performance is theoretically analyzed in terms of the average maximal Signal-to-Noise Ratio(SNR) gain available over the Space-Time block coding based Transmit Diversity(STTD) technology. Theoretic analysis and simulation results show that the closed loop transmit diversity can provide a 3dB performance gain over the open loop scheme in a single path fading channel, while the performance gain decreases dramatically with the increasing inherent multipath diversity of the wireless channel.  相似文献   

5.
For transmitting compressed digital video, the authors propose using threshold decodable block codes with large block length, and a posteriori probability (APP) soft decision decoding. A new approximation of the weight function associated with APP soft decision decoding of threshold decodable codes is presented. When the number of components in the parity equations is large, the new method gives excellent error performance, whereas there is a substantial degradation in the performance of the least reliable symbol approximation presented by Tanaka et al. (1980) and others. The effect of feedback on the performance of the APP decoder is also analyzed. It is shown that if the performance criterion is word error rate rather than bit error rate, feedback of previously decoded bits is essential to obtain all possible coding gain from the soft decision decoder. Finally, the performance of the proposed coding scheme is compared to the performance of a concatenated coding system with the same rate  相似文献   

6.
A multistage recursive block interleaver (MIL) is proposed for the turbo code internal interleaver. Unlike conventional block interleavers, the MIL repeats permutations of rows and columns in a recursive manner until reaching the final interleaving length. The bit error rate (BER) and frame error rate (FER) performance with turbo coding and MIL under frequency-selective Rayleigh fading are evaluated by computer simulation for direct-sequence code-division multiple-access mobile radio. The performance of rate-1/3 turbo codes with MIL is compared with pseudorandom and S-random interleavers assuming a spreading chip rate of 4.096 Mcps and an information bit rate of 32 kbps. When the interleaving length is 3068 bits, turbo coding with MIL outperforms the pseudorandom interleaver by 0.4 dB at an average BER of 10-6 on a fading channel using the ITU-R defined Vehicular-B power-delay profile with the maximum Doppler frequency of fD = 80 Hz. The results also show that turbo coding with MIL provides superior performance to convolutional and Reed-Solomon concatenated coding; the gain over concatenated coding is as much as 0.6 dB  相似文献   

7.
The throughput performance of incremental redundancy (INR) schemes, based on short constraint length convolutional codes, is evaluated for the block-fading Gaussian collision channel. Results based on simulations and union bound computations are compared to estimates of the achievable throughput performance with random binary and Gaussian coding in the limit of large block lengths, obtained through information outage considerations. For low channel loads, it is observed that INR schemes with binary convolutional codes and limited block length may provide throughput close to the achievable performance for binary random coding. However, for these low loads, compared to binary random coding, Gaussian random coding may provide significantly better throughput performance, which prompts the use of larger modulation constellations. For high channel loads, a relatively large gap in throughput performance between binary convolutional codes and binary random codes indicates a potential for extensive performance improvement by alternative coding strategies. Only small improvements of the throughput have been observed by increasing the complexity through increased state convolutional coding.  相似文献   

8.
Vector coding for partial response channels   总被引:1,自引:0,他引:1  
A linear technique for combining equalization and coset codes on partial response channels with additive white Gaussian noise is developed. The technique, vector coding, uses a set of transmit filters or `vectors' to partition the channel into an independent set of parallel intersymbol interference (ISI)-free channels for any given finite (or infinite) block length. The optimal transmit vectors for such channel partitioning are shown to be the eigenvectors of the channel covariance matrix for the specified block length, and the gains of the individual channels are the eigenvalues. An optimal bit allocation and energy distribution, are derived for the set of parallel channels, under an accurate extension of the continuous approximation for power in optimal multidimensional signal sets for constellations with unequal signal spacing in different dimensions. Examples are presented that demonstrate performance advantages with respect to zero-forcing decision feedback methods that use the same coset code on the same partial response channel. Only resampling the channel at an optimal rate and assuming no errors in the feedback path will bring the performance of the decision feedback methods up to the level of the vector coded system  相似文献   

9.
We consider the transmission of a Gaussian source through a block fading channel. Assuming each block is decoded independently, the received distortion depends on the tradeoff between quantization accuracy and probability of outage. Namely, higher quantization accuracy requires a higher channel code rate, which increases the probability of outage. We first treat an outage as an erasure, and evaluate the received mean distortion with erasure coding across blocks as a function of the code length. We then evaluate the performance of scalable, or multi-resolution coding in which coded layers are superimposed within a coherence block, and the layers are sequentially decoded. Both the rate and power allocated to each layer are optimized. In addition to analyzing the performance with a finite number of layers, we evaluate the mean distortion at high signal-to-noise ratios as the number of layers becomes infinite. As the block length of the erasure code increases to infinity, the received distortion converges to a deterministic limit, which is less than the mean distortion with an infinite-layer scalable coding scheme. However, for the same standard deviation in received distortion, infinite layer scalable coding performs slightly better than erasure coding, and with much less decoding delay.  相似文献   

10.
在基于信道信息有限反馈的无线多入单出系统中,发射机可采用简单的波束成形技术实现发射分集增益和阵列增益。已有的相关研究大多包含块衰落信道、准确信道估计或无反馈延迟等理想假设。该文建立了更为实际的Jakes时变信道中存在信道估计误差和反馈延迟的系统模型,分析了方形和矩形正交幅度调制星座图的平均误码率。研究表明:误码率的理论分析和仿真结果完全相符;增加反馈比特数可提高阵列增益,但不能增加分集增益;在慢变信道中,波束成形要显著优于正交空时分组码;误码率受信道估计误差和反馈延迟影响,且对后者尤为敏感。  相似文献   

11.
Channel codes where the redundancy is obtained not from parity symbols, but from expanding the channel signal-set, are addressed. They were initially proposed by G. Ungerboeck (1982) using a convolutional code. Here, a block coding approach is given. Rate m/(m+1) coded 2m+1-ary phase-shift keying (PSK) is considered. The expanded signal-set is given the structure of a finite field. The code is defined by a square nonsingular circulant generator matrix over the field. Binary data are mapped on a dataword, of the same length as the codewords, over an additive subgroup of the field. The codes using trellises are described, and then the Viterbi algorithm for decoding is applied. The asymptotic coding gain ranges from 1.8 to 6.0 dB for QPSK going from blocklength 3 to 12. For 8-PSK, the gain is from 0.7 to 3.0 dB with blocklength 4 to 8. With only four states in the trellis, codes of any length for QPSK and 8-PSK are constructed, each having an asymptotic coding gain of 3.0 dB. Simulation results are presented. It is found that the bit-error rate performance at moderate signal-to-noise ratios is sensitive to the number of nearest and next-nearest neighbors  相似文献   

12.
This paper investigates the performance of various “turbo” receivers for serially concatenated turbo codes transmitted through intersymbol interference (ISI) channels. Both the inner and outer codes are assumed to be recursive systematic convolutional (RSC) codes. The optimum turbo receiver consists of an (inner) channel maximum a posteriori (MAP) decoder and a MAP decoder for the outer code. The channel MAP decoder operates on a “supertrellis” which incorporates the channel trellis and the trellis for the inner error-correcting code. This is referred to as the MAP receiver employing a SuperTrellis (STMAP). Since the complexity of the supertrellis in the STMAP receiver increases exponentially with the channel length, we propose a simpler but suboptimal receiver that employs the predictive decision feedback equalizer (PDFE). The key idea in this paper is to have the feedforward part of the PDFE outside the iterative loop and incorporate only the feedback part inside the loop. We refer to this receiver as the PDFE-STMAP. The complexity of the supertrellis in the PDFE-STMAP receiver depends on the inner code and the length of the feedback part. Investigations with Proakis B, Proakis C (both channels have spectral nulls with all zeros on the unit circle and hence cannot be converted to a minimum phase channel) and a minimum phase channel reveal that at most two feedback taps are sufficient to get the best performance. A reduced-state STMAP (RS-STMAP) receiver is also derived which employs a smaller supertrellis at the cost of performance.  相似文献   

13.
In this paper, we study the optimal training and data transmission strategies for block fading multiple-input multiple-output (MIMO) systems with feedback. We consider both the channel gain feedback (CGF) system and the channel covariance feedback (CCF) system. Using an accurate capacity lower bound as a figure of merit that takes channel estimation errors into account, we investigate the optimization problems on the temporal power allocation to training and data transmission as well as the training length. For CGF systems without feedback delay, we prove that the optimal solutions coincide with those for nonfeedback systems. Moreover, we show that these solutions stay nearly optimal even in the presence of feedback delay. This finding is important for practical MIMO training design. For CCF systems, the optimal training length can be less than the number of transmit antennas, which is verified through numerical analysis. Taking this fact into account, we propose a simple yet near optimal transmission strategy for CCF systems, and derive the optimal temporal power allocation over pilot and data transmission.  相似文献   

14.
The performance of a twisted-pair channel is assumed to be dominated by near-end crosstalk (NEXT) from other pairs in the same cable. Both intrabuilding local and central office loop channels can be modeled as NEXT-dominated channels. The capacity of this type of channel is found, using a Gaussian model. It is shown that the capacity is independent of the transmitted power spectral density. The results also indicate that present systems operate far below theoretical capacity. The capacity of a twisted-pair channel with both NEXT and white Gaussian noise present is also addressed  相似文献   

15.
The use of reduced-state sequence estimation techniques in a digital subscriber loop receiver is discussed. These techniques offer a potential performance improvement over conventional equalization techniques such as decision feedback equalization (DFE). Stationary and cyclostationary NEXT noise models are described. The theoretical performance obtainable from a Viterbi algorithm receiver with stationary white Gaussian noise, stationary NEXT, and cyclostationary NEXT noise models is estimated, and the reduced-state decision feedback sequence estimation and M algorithms are reviewed. It is shown that the improvement can be especially significant in the presence of cyclostationary crosstalk because of the freedom that sequence estimation receivers afford in the choice of receiver sampling phase. This advantage is evaluated for Viterbi algorithm receivers. By simulation of two practical reduced-state sequence estimation receivers, it is demonstrated that, in the presence of cyclostationary crosstalk, a substantial increase in maximum loop range (or equivalently, maximum bit rate) may be achievable compared to conventional DFE equalization  相似文献   

16.
High data rate space time/frequency block coding (STBC/SFBC) suffers from interference due to its non-orthogonal structure of the effective channel. This paper presents new STBC/SFBC scheme to suppress interference with an aid of angle feedback. The proposed scheme achieves the full diversity gain with the spatial code rate of two by rotating constellation symbols in STBC/SFBC codewords. We find the closed form solution for the feedback angle and propose 1-bit feedback criterion. Simulation shows that the proposed scheme with 1-bit feedback improves the system performance significantly.  相似文献   

17.
It has been shown that multilevel space–time trellis codes (MLSTTCs) designed by combining multilevel coding (MLC) with space–time trellis codes (STTCs) can provide improvement in diversity gain and coding gain of the STTCs. MLSTTCs assume perfect channel state information (CSI) at receiver and no knowledge of CSI at transmitter. Weighted multilevel space–time trellis codes (WMLSTTCs), designed by combining MLSTTCs and perfect CSI at transmitter are capable of providing improvement in coding gain of MLSTTCs. In this paper, we present improvement in performance of MLSTTCs by using channel feedback information from the receiver for adaptive selection of generator sequences. The selected generator sequences are used for encoding the component STTCs. The receiver compares current channel profile at receiver with a set of predetermined channel profiles, and sends an index of a predefined channel profile closest to the current channel profile to the transmitter. The transmitter selects a code set that matches best with the current channel profile at receiver using the index. The selected code set having different sets of generator sequences is used by STTC encoders to generate dynamic space–time trellis codes (DSTTCs). The DSTTCs act as component codes in multilevel coding for generating new codes henceforth referred to as multilevel dynamic space–time trellis codes (MLDSTTCs). Analysis and simulation results show that MLDSTTCs provide improvement in performance over MLSTTCs.  相似文献   

18.
Orthogonal space-time block coding (OSTBC) is a recent technique that provides maximal diversity gains on a space-time channel at a very modest computational cost. Recently, several authors have suggested to improve the performance of an OSTBC system by using a feedback of channel state information from the receiver to the transmitter. In this letter, we study the performance of an OSTBC system with quantized low-rate feedback. We establish conditions under which the system achieves full diversity and we also analyze the performance of a method that employs a feedback consisting of only one information bit.  相似文献   

19.
We consider a feedback communication system in which the forward and feedback channels are disturbed by additive noise and constrained in average power. Two block coding schemes are proposed in which the signals are orthogonal waveforms. A finite number of forward and feedback transmissions per message is made. Information received over the feedback channel is used to reduce the expected value of forward signal energy on all iterations after the first. Similarly, the expected value of feedback signal energy is reduced on all iterations after the first. These schemes, which are modifications of a feedback coding scheme due to Kramer, obtain improved error performance over one-way coding at all rates up to the forward channel capacity, provided only that the feedback channel capacity is greater than the forward channel capacity. They require less feedback power than existing feedback coding schemes to achieve a given error performance.  相似文献   

20.
Crosstalk between neighboring channels can have significant impact on system bit-error rate (BER) as serial I/O data rates scale above 10 Gb/s. This paper presents receive-side circuitry which merges the cancellation of both near-end and far-end crosstalk (NEXT/FEXT) and can automatically adapt to different channel environments and variations in process, voltage, and temperature. NEXT cancellation is realized with a novel 3-tap FIR filter which combines two traditional FIR filter taps and a continuous-time band-pass filter IIR tap for efficient crosstalk cancellation, with all filter tap coefficients automatically determined via an on-die sign–sign least-mean-square (SS-LMS) adaptation engine. FEXT cancellation is realized by coupling the aggressor signal through a differentiator circuit whose gain is automatically adjusted with a power-detection-based adaptation loop. A prototype fabricated in a general purpose 65-nm CMOS process includes the adaptive NEXT and FEXT circuitry, along with a continuous-time linear equalizer (CTLE) to compensate for frequency-dependent channel loss. Enabling the crosstalk cancellation circuitry while operating at 10 Gb/s over coupled 4-in FR4 transmission line channels with NEXT and FEXT aggressors opens a previously closed eye and allows for a 0.2 UI timing margin at a BER = 10?9. Total power including the NEXT/FEXT crosstalk cancellation circuitry, CTLE, and high-speed output buffer is 34.6 mW, and the core circuit area occupies 0.3 mm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号