首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A cache DRAM which consists of a dynamic RAM (DRAM) as main memory and a static RAM (SRAM) as cache memory is proposed. An error checking and correcting (ECC) scheme utilizing the wide internal data bus is also proposed. It is constructed to be suitable for a four-way set associated cache scheme with more than a 90% hit rate estimated to be obtained. An experimental cache DRAM with 1-Mb DRAM and 8-kb SRAM has been fabricated using a 1.2-μm, triple-polysilicon, single-metal CMOS process. A SRAM access time of 12 ns and a DRAM access time of 80 ns, including an ECC time of 12 ns, have been obtained. Accordingly, an average access time of 20 ns is expected under the condition that the hit rate is 90%. The cache DRAM has a high-speed data mapping capability and high reliability suitable for low-end workstations and personal computers  相似文献   

2.
A 1-Mb SRAM (static random-access memory) configurable as a 128-kb×8, 256-kb×4, or 1-Mb×1 memory featuring asynchronous operation with static-column and chip-enable-access speedup modes or synchronous operation with a fast-page (toggle) or static-column mode is described. It has been fabricated in a double-metal, double-polysilicon CMOS process with 0.7-μm geometry and special SRAM structures. The measured synchronous access of 29 ns with a fast-page mode access of 22 ns. Measured asynchronous access is 34 ns with a static-column access of 33 ns and a chip-select speedup access of 29 ns. The SRAMs six-transistor CMOS memory cell is 58.24 μm2  相似文献   

3.
A 16-Mb CMOS SRAM having an access time of 12 ns under a 3.3-V supply has been developed with a 0.4-μm process technology. An address access time of 12 ns has been achieved by an optimized architecture, the use of an automated transistor size optimizer, and a read-bus midlevel preset scheme (RBMIPS). For better yield and efficient testing, an on-chip test circuit with three test modes has been implemented  相似文献   

4.
A 4-Mb CMOS SRAM with 3.84 μm2 TFT load cells is fabricated using 0.25-μm CMOS technology and achieves an address access time of 6 ns at a supply voltage of 2.7 V. The use of a current sense amplifier that is insensitive to its offset voltage enables the fast access time. A boosted cell array architecture allows low voltage operation of fast SRAM's using TFT load cells  相似文献   

5.
We have developed two schemes for improving access speed and reliability of a loadless four-transistor (LL4T) SRAM cell: a dual-layered twisted bitline scheme, which reduces coupling capacitance between adjacent bitlines in order to achieve highspeed READ/WRITE operations, and a triple-well shield, which protects the memory cell from substrate noise and alpha particles. We incorporated these schemes in a high-performance 0.18-μm-generation CMOS technology and fabricated a 16-Mb SRAM macro with a 2.18-μm2 memory cell. The macro size of the LL4T-SRAM is 56 mm2, which is 30% to 40% smaller than a conventional six-transistor SRAM when compared with the same access speed. The developed macro functions at 500 MHz and has an access time of 2.0 ns. The standby current has been reduced to 25 μA/Mb with a low-leakage nMOSFET in the memory cell  相似文献   

6.
A 20 ns 4-Mb CMOS SRAM operating at a single supply voltage of 3.3 V is described. The fast access time has been achieved by a newly proposed word-decoding architecture and a high-speed sense amplifier combined with the address transition detection (ATD) technique. The RAM has the fast address mode, which achieves quicker than 10-ns access, and the 16-b parallel test mode for the reduction of test time. A 0.6-μm process technology featuring quadruple-polysilicon and double-metal wiring is adopted to integrate more than 16 million transistors in a 8.35-mm×18.0-mm die  相似文献   

7.
The dual-sensing-latch circuit proposed here can solve the synchronization problem of the conventional wave-pipelined SRAM and the proposed source-biased self-resetting circuit reduces both the cycle and access time of cache SRAM's. A 16-kb SRAM using these circuit techniques was designed, and was fabricated with 0.25-μm CMOS technology. Simulation results indicate that this SRAM has a typical clock access time of 2.6 ns at 2.5-V supply voltage and a worst minimum cycle time of 2.6 ns  相似文献   

8.
Circuit techniques for a reduced-voltage-amplitude data bus, fast access 16-Mb CMOS SRAM are described. An interdigitated bit-line architecture reduces data bus line length, thus minimizing bus capacitance. A hierarchical sense amplifier consists of 32 local sense amplifiers and a current sense amplifier. The current sense amplifier is used to reduce the data bus voltage amplitude and the sensing of the 16-b data bus signals in parallel. Access time of 15 ns and an active power of 165 mW were achieved in a 16-Mb CMOS SRAM. A split-word-line layout memory cell with double-gate pMOS thin-film transistors (TFTs) keeps the transistor width stable while providing high-stability memory cell characteristics. The double-gate pMOS TFT also increases cell-storage node capacitance and soft-error immunity  相似文献   

9.
A 1-Mb (128 K×8-bit) CMOS static RAM (SRAM) with high-resistivity load cell has been developed with 0.8-μm CMOS process technology. Standby power is 25 μW, active power 80 mW at 1-MHz WRITE operation, and access time 46 ns. The SRAM uses a PMOS bit-line DC load to reduce power dissipation in the WRITE cycle, and has a four-block access mode to reduce the testing time. A small 4.8×8.5-μm2 cell has been realized by triple-polysilicon layers. The grounded second polysilicon layer increases cell capacitance and suppresses α-particle-induced soft errors. The chip size is 7.6×12.4 mm2  相似文献   

10.
This paper describes power reduction circuit techniques in an ultra-high-speed emitter-coupled logic (ECL)-CMOS SRAM. Introduction of a 0.25-μm MOS transistor allows a Y decoder and a bit-line driver to be composed of CMOS circuits, resulting in a power reduction of 34%. Moreover, a variable-impedance load has been proposed to reduce cycle time. A 1-Mb ECL-CMOS SRAM was developed by using these circuit techniques and 0.2-μm BiCMOS technology. The fabricated SRAM has an ultrafast access time of 550 ps and a high operating frequency of 900 MHz with a power dissipation of 43 W  相似文献   

11.
A 1-Mbit CMOS static RAM (SRAM) with a typical address access time of 9 ns has been developed. A high-speed sense amplifier circuit, consisting of a three-stage PMOS cross-coupled sense amplifier with a CMOS preamplifier, is the key to the fast access time. A parallel-word-access redundancy architecture, which causes no access time penalty, was also incorporated. A polysilicon PMOS load memory cell, which had a large on-current-to-off-current ratio, gave a much lower soft-error rate than a conventional high-resistance polysilicon load cell. The 1-Mbit SRAM, fabricated using a half-micrometer, triple-poly, and double-metal CMOS technology, operated at a single supply voltage of 5 V. An on-chip power supply converter was incorporated in the SRAM to supply a partial internal supply voltage of 4 V to the high-performance half-micrometer MOS transistors.<>  相似文献   

12.
A 128-kb word/spl times/8-b CMOS SRAM with an access time of 3 ns and a standby current of 2 /spl mu/A is described. This RAM has been fabricated using triple-polysilicon and single-aluminum CMOS technology with 0.8-/spl mu/m minimum design features. A high-resistive third polysilicon load has been developed to realize a low standby current. In order to obtain a faster access time, a 16-block architecture and a data-output presetting technique combined with address transition detection (ATD) are used. This RAM has a flash-clear function in which logical zeros are written into all memory cells in less than 1 /spl mu/s.  相似文献   

13.
A novel architecture that enables fast write/read in poly-PMOS load or high-resistance polyload single-bit-line cells is developed. The architecture for write uses alternate twin word activation (ATWA) with bit-line pulsing. A dummy cell is used to obtain a reference voltage for reading. An excellent balance between a normal cell signal line and a dummy cell signal line is attained using balanced common data-line architecture. A newly developed self-bias-control (SBC) sense amplifier provides excellent stability and fast sensing performance for input voltages close to VCC at a low power supply of 2.5 V. The single-bit-line architecture is incorporated in a 16-Mb SRAM, which was fabricated using 0.25-μm CMOS technology. The proposed single-bit-line architecture reduces the cell area to 2.3-μm2 , which is two-thirds of a conventional two-bit-line cell with the same processes. The 16-Mb SRAM, a test chip for a 64-Mb SRAM, shows a 15-ns address access time and a 20-ns cycle time  相似文献   

14.
A 4-Mb CMOS SRAM having 0.2-μA standby current at a supply voltage of 3 V has been developed. Current-mirror/PMOS cross-coupled cascade sense-amplifier circuits have achieved the fast address access time of 23 ns. A new noise-immune data-latch circuit has attained power-reduction characteristics at a low operating cycle time without access delay. A 0.5-μm CMOS, four-level poly, two-level metal technology with a polysilicon PMOS load memory cell, yielded a small cell area of 17 μm2 and the very small standby current. A quadruple-array, word-decoder architecture allowed a small chip area of 122 mm2  相似文献   

15.
A new architecture for serial access memory is described that enables a static random access memory (SRAM) to operate in a serial access mode. The design target is to access all memory address serially from any starting address with an access time of less than 10 ns. This can be done by all initializing procedure and three new circuit techniques. The initializing procedure is introduced to start the serial operation at an arbitrary memory address. Three circuit techniques eliminate extra delay time caused by an internal addressing of column lines, sense amplifiers, word lines, and memory cell blocks. This architecture was successfully implemented in a 4-Mb CMOS SRAM using a 0.6 μm CMOS process technology. The measured serial access time was 8 ns at a single power supply voltage of 3.3 V  相似文献   

16.
A 4-Mb SRAM with a 15-ns access time and a uniquely selectable (×4 or ×1) bit organization has been developed based on a 0.55-μm triple-polysilicon double-metal CMOS technology. An input-controlled PMOS-load (ICPL) sense amplifier, Y-controlled bit-line loads (YCLs), and a transfer word driver (TDW) are three key circuits which have been utilized in addition to the 0.55-μm CMOS technology to achieve the remarkable access time of 15 ns. Bit organization of either ×4 or ×1 can be selected purely electrically, and does not require any pin connection procedure  相似文献   

17.
A 7-ns 140-mW 1-Mb CMOS SRAM was developed to provide fast access and low power dissipation by using high-speed circuits for a 3-V power supply: a current-sense amplifier and pre-output buffer. The current-sense amplifier shows three times the gain of a conventional voltage-sense amplifier and saves 60% of power dissipation while maintaining a very short sensing delay. The pre-output buffer reduces output delays by 0.5 ns to 0.75 ns. The 6.6-μm2 high-density memory cell uses a parallel transistor layout and phase-shifting photolithography. The critical charge that brings about soft error in a memory cell can be drastically increased by adjusting the resistances of poly-PMOS gate electrodes. This can be done without increasing process complexity or memory cell area. The 1-Mb SRAM was fabricated using 0.3-μm CMOS quadrupole-poly and double-metal technology. The chip measures 3.96 mm×7.4 mm (29 mm2)  相似文献   

18.
A 9-ns 16-Mb CMOS SRAM has been developed using a 0.35-μm CMOS process, The current-mode fully nonequalized data path has been realized in a CMOS SRAM for the first time by using a stabilized feedback current-sense amplifier (SFCA) that provides a small input resistance and an offset compensation effect. To reduce the test time, a bit-line wired-OR parallel test circuit has been implemented  相似文献   

19.
A 29-mm2, 16-Mb divided bitline NOR (DINOR) flash memory is fabricated using 0.25-μm triple-well three-layer-metal CMOS technology. Read access time is 72 ns at 1.8 V. A poly diode charge-pump technique improves pump efficiency and eliminates the body effect problem  相似文献   

20.
A high-speed 2K/spl times/8 bit full CMOS SRAM fabricated with a platinum silicide gate electrode and single-level aluminum technology is described. A typical address access time of 16 ns, which is comparable to the 16-kb bipolar SRAMs, was achieved. Typical active and standby power dissipations are 150 mW and 25 nW, respectively. The platinum silicide word line reduces the total address access time by 25%. A compact cell layout design, as well as a 1.5-/spl mu/m device feature size, also gives fast access time. The properly controlled bit line swing voltage provides reliable and fast readout operation. The chip size of the SRAM is 2.7/spl times/3.5 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号