首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To simulate the effects of Gd2O3-doping and high-energy fission products in UO2, Gd2O3-doped CeO2 pellets were irradiated with 200-MeV Xe14+ ions. Doping and irradiation effects were analyzed using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). The lattice constant of CeO2 decreases and the local structure is disordered with increased doping levels. However, the irradiation induces an expansion of the lattice and a disordering of atomic arrangement near the Gd atoms. The effects of the irradiation become more pronounced with increasing Gd2O3-dopant levels. Our results are compared with those of a study involving Er2O3-doped CeO2.  相似文献   

2.
采用60 Coγ射线辐照处理污泥滤液,通过对比处理前后化学需氧量(COD)、紫外可见吸光度和浑浊度的变化,研究了辐照处理中初始pH、初始H2O2浓度和吸收剂量对污泥滤液处理效果的影响。结果表明:在相同吸收剂量和初始H2O2浓度条件下,酸性条件更利于CODCr的降低;γ辐照联合H2O2处理存在显著协同效应,吸收剂量为18.75kGy、初始H2O2浓度为2mmol/L时,污泥滤液CODcr去除率达70.4%,浑浊度下降94.9%。  相似文献   

3.
In order to investigate possible structural changes due to high-density electronic excitation, anatase TiO2 thin film specimens were irradiated with 230 MeV 136Xe15+ ions and 200 MeV 197Au13+ ions. X-ray diffraction (XRD) patterns were measured before and after irradiation. The intensity of the XRD peak assigned to the (0 0 4) planes of anatase TiO2 decreases in an exponential manner as a function of ion-fluence. This result can be explained by the formation of the cylindrical damaged regions (i.e. ion tracks) with diameters of 9.6 and 16.3 nm for 230 MeV Xe and for 200 MeV Au ion irradiations, respectively. The difference in the track diameter between Xe ion irradiation and Au ion irradiation can be attributed to the difference in the electronic stopping power (and to the ion-velocity effect, if any). For 200 MeV Au ion irradiation, splitting of the (0 0 4) peak is observed. The original (0 0 4) TiO2 peak remains in the same position, but the new peak shifts to higher angles as fluence increases.  相似文献   

4.
International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO2 pellets used for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) followed by supercritical fluid extraction was investigated. When UO2 pellets were dissolved and extracted with tri-n-butyl phosphate (TBP)–HNO3 complex in supercritical CO2 (SC-CO2), the extraction efficiency was less than 7% under experimental conditions. After UO2 pellets were ground into UO2 fine powders, the extraction efficiency of the UO2 fine powders with TBP–HNO3 complex in SC-CO2 could reach 92%. After UO2 pellets broke spontaneously into U3O8 powders under O2 flow and 600 °C, the extraction efficiency of the U3O8 powder with TBP–HNO3 complex in SC-CO2 could reach more than 98%.  相似文献   

5.
In order to understand the formation mechanism of a crystallographic re-structuring in the periphery region of high-burnup nuclear fuel pellets, named as “rim structure”, information on the accumulation process of radiation damage and fission products (FPs), as well as high-density electronic excitation effects by FPs, are needed. In order to separate each of these processes and understand the high-density electronic excitation effects, 70–210 MeV FP ion (Xe10–14+, I7+ and Zr9+) irradiation studies on CeO2, as a simulation of fluorite ceramics of UO2, have been done at a tandem accelerator of JAEA-Tokai and the microstructure changes were determined by transmission electron microscope (TEM). Measurements of the diameter of ion tracks, which are caused by high-density electronic excitation, have clarified that the effective area of electronic excitation by high-energy fission products is around 5–7 nm  and the square of the track diameter tends to follow linear function of the electronic stopping power (Se). Prominent changes are hardly observed in the microstructure up to 400 °C. After overlapping of ion tracks, the elliptical deformation of diffraction spots is observed, but the diffraction spots are maintained at higher fluence. These results indicate that the structure of CeO2 is still crystalline and not amorphous. Under ion tracks overlapping heavily (>1 × 1015 ions/cm2), surface roughness, with characteristic size of the roughness around 1 μm, is observed and similar surface roughness has also been observed in light-water reactor (LWR) fuels.  相似文献   

6.
We have studied electronic- and atomic-structure modifications of polycrystalline WO3 films (bandgap of ∼3 eV) by ion irradiation. WO3 films were prepared by oxidation of W films on MgO substrates and of W sheets. We find disordering or amorphization, the lattice expansion of ∼1.5% and bandgap increase of 0.2 eV after 90 MeV Ni ion irradiation at ∼3 × 1012 cm−2. A broad peak of optical absorption appears around 1.6 μm by ion irradiation. We also find that the erosion yield by high-energy ions with the equilibrium charge exceeds 104 and that the erosion yield under ion impact with non-equilibrium charge (90 MeV Ni+10) is ∼1/5 of that with the equilibrium charge (89 MeV Ni+19). Effects of depth dependence of the ion mean charge on the erosion yields are discussed. The erosion yield by low-energy ions is also presented.  相似文献   

7.
为研究241Am在La2Zr2O7烧绿石中的固化行为及其对烧绿石晶体结构稳定性的影响,实验选用Nd作为241Am的模拟物,采用Sol-喷雾热解法合成了(La1-yNdy)2Zr2O7(0.0≤y≤1.0)系列样品,并借助X射线衍射和振动光谱手段对样品的晶体结构稳定性进行了研究。实验结果表明:随着Nd掺杂量的增加,O48f位置参数x48f和I(111) /I(222)均呈规律性增大,Raman谱逐渐展宽,IR谱发生蓝移,所有结果均证实用Nd不断替换La将导致烧绿石晶体结构有序化程度逐渐降低。另外,实验发现掺杂量y≈0.8是烧绿石晶体结构发生几何相变的逾渗阈值,超过该阈值有序的烧绿石结构将发生突变进而加速向无序萤石结构转变,该实验结果可为(La1-yAmy)2Zr2O7固溶体的结构稳定性研究提供参考。  相似文献   

8.
Transparent conducting cadmium stannate thin films were prepared by spray pyrolysis method on Corning substrate at a temperature of 525 °C. The prepared films are irradiated using 120 MeV swift Ag9+ ions for the fluence in the range 1 × 1012 to 1 × 1013 ions cm−2 and the structural, optical and electrical properties were studied. The intensity of the film decreases with increasing ion fluence and amorphization takes place at higher fluence (1 × 1013 ions cm−2). The transmittance of the films decreases with increasing ion fluence and also the band gap value decreases with increasing ion fluence. The resistivity of the film increased from 2.66 × 10−3 Ω cm (pristine) to 5.57 × 10−3 Ω cm for the film irradiated with 1 × 1013 ions cm−2. The mobility of the film decreased from 31 to 12 cm2/V s for the film irradiated with the fluence of 1 × 1013 ions cm−2.  相似文献   

9.
We made an experimental study on ion guiding through capillaries in uncoated Al2O3 membranes using a variety of ions such as O1+, O3+, and O6+. The incident energy was varied within the range of 30-150 keV. The results were compared with others using coated PET and Al2O3 capillary membranes as well as with the so-called scaling law discovered by Stolterfoht and his co-workers. Good agreement of our results with the scaling law was found. However, our membranes showed extraordinarily strong guiding ability. The reason lies in that our membranes were uncoated. A slower charge drift speed along the insulating capillary wall and a much larger equilibrium charge Q seems to exist in our experiment.  相似文献   

10.
Room-temperature Ti ion implantation and subsequent thermal annealing in N2 ambience have been used to fabricate the anatase and rutile structured N-doped TiO2 particles embedded in the surface region of fused silica. The Stopping and Range of Ions in Matter (SRIM) code simulation indicates a Gaussian distribution of implanted Ti, peaked at ∼75 nm with a full width at half maximum of ∼80 nm. However, the transmission electron microscopy image shows a much shallower distribution to depth of ∼70 nm. Significant sputtering loss of silica substrates has occurred during implantation. Nanoparticles with size of 10-20 nm in diameter have formed after implantation. X-ray photoelectron spectroscopy indicates the coexistence of TiO2 and metallic Ti in the as-implanted samples. Metallic Ti is oxidized to anatase TiO2 after annealing at 600 °C, while rutile TiO2 forms by phase transformation after annealing at 900 °C. At the same time, N-Ti-O, Ti-O-N and/or Ti-N-O linkages have formed in the lattice of TiO2. A red shift of 0.34 eV in the absorption edge is obtained for N-doped anatase TiO2 after annealing at 600 °C for 6 h. The absorbance increases in the ultraviolet and visible waveband.  相似文献   

11.
In order to simulate the effects of burnable poison doping on the fission fragment damage of UO2 nuclear fuels, Er2O3-doped CeO2 pellets were irradiated with 200 MeV Xe14+ ions. The irradiation effect was measured by means of X-ray diffraction (XRD). The expansion of lattice and the disordering of atomic arrangement due to the irradiation become more remarkable with increasing the concentration of the Er2O3 dopant.  相似文献   

12.
In-situ neutron diffraction combined with AC impedance spectroscopy was applied successfully to investigate the correlation between crystal structure and electrical properties of the La2Mo2O9 oxide ion conducting electrolyte material. Neutron diffraction patterns were collected as a function of temperature while the AC impedance spectra were recorded simultaneously using a modified sample environment to monitor the conductivity change of the sample. A close relationship between unit cell parameters and the bulk conductivity was observed, confirming that the oxygen transport is dependent on the lattice structure. With the transition from the low temperature alpha to the high temperature beta phase, expansion of the crystal structure makes more space available for oxygen transport, leading to a dramatic increase of the ionic conductivity. The successful application of this technique provides a new method to simultaneously investigate crystal structure and electrical properties in electro-ceramics in the future.  相似文献   

13.
In this report, we present a study of a thin film tri-layer structure, HfO2/MgO/HfO2, irradiated at room temperature with 10 MeV Au ions over a wide fluence range from 5 × 1013 to 3.7 × 1016 Au/cm2. The tri-layer structure is a model representation for the microstructure in a composite dispersion nuclear fuel or waste form. Microstructural and chemical composition changes were examined by transmission and scanning transmission electron microscopy (TEM & STEM) combined with energy dispersive X-ray spectroscopy (EDXS), grazing incidence X-ray diffraction (GIXRD) and Rutherford backscattering spectroscopy (RBS) techniques. The microstructural evolution in the HfO2/MgO/HfO2 trilayer was similar to the radiation damage behavior of the individual HfO2 and MgO constituents. For instance, we observed an absence of amorphization in both the MgO and HfO2 layers and a phase transformation of HfO2 from the monoclinic to the tetragonal HfO2 polymorph. In addition, we observed the formation of void-type defects at one of the MgO/HfO2 interfaces. Such voids are not characteristic to either bulk material (MgO or HfO2) exposed to ion irradiation.  相似文献   

14.
Tin dioxide nanoparticles embedded in silica matrix were fabricated by ion implantation combined with thermal oxidation. Silica substrate was implanted with a 150 keV Sn+ ions beam with a fluence of 1.0 × 1017 ions/cm2. The sample was annealed for 1 h in a conventional furnace at a temperature of 800 °C under flowing O2 gas. According to the structural characterization performed by X-ray diffraction and transmission electron microscopy techniques, metallic tetragonal tin nanoparticles with a volume average size of 12.8 nm were formed in the as-implanted sample. The annealing in oxidizing atmosphere promotes the total oxidation of the tin nanoparticles into tin dioxide nanoparticles with a preferential migration toward the surface of the matrix, where large and coalesced nanoparticles were observed, and a small diffusion toward the bulk, where smaller nanoparticles were found.  相似文献   

15.
Silicon ions were implanted into SiO2 thin films with various doses and energies. For the films implanted with various ion doses the photoluminescence (PL) intensity of 470 nm firstly increased with the increase of Si ion dose, which is similar to the variation trend of displacement per atom (DPA) number during ion radiation. Further increasing Si ion dose the PL intensity of 470 nm decreased gradually since the neutral oxygen vacancy centers were destroyed. For the samples implanted with different energy the variation trend of PL intensity for 470 nm peak is similar to the result of DPA under different radiation energy according to SRIM2006 simulation. With the increase of radiation energy a new PL peak at 550 nm appeared because of the variation of defect type. Combining with the simulation results and PL spectra the radiation effect on Si/SiO2 thin films were proposed.  相似文献   

16.
Polycrystalline pellets of the rare-earth sesquioxide Dy2O3 with cubic C-type rare-earth structure were irradiated with 300 keV Kr2+ ions at fluences up to 5 × 1020 Kr/m2 at cryogenic temperature. Irradiation-induced microstructural evolution is characterized using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). In previous work, we found a phase transformation from a cubic, C-type to a monoclinic, B-type (C2/m) rare-earth structure in Dy2O3 during Kr2+ ion irradiation at a fluence of less than 1 × 1020 Kr/m2. In this study, we find that the crystal structure of the top and middle regions of the implanted layer transform to a hexagonal, H-type (P63/mmc) rare-earth structure when the irradiation fluence is increased to 5 × 1020 Kr/m2; the bottom of the implanted layer, on the other hand, remains in a monoclinic phase. The irradiation dose dependence of the C-to-B-to-H phase transformation observed in Dy2O3 appears to be closely related to the temperature and pressure dependence of the phases observed in the phase diagram. These transformations are also accompanied by a decrease in molecular volume (or density increase) of approximately 9% and 8%, respectively, which is an unusual radiation damage behavior.  相似文献   

17.
采用气相二氧化硅法制备了LaNi4.25Al0.75/SiO2复合材料。研究了该复合材料经不同温度(473~1 073 K)热处理后的相组成、形貌及吸放氢p-C-T曲线、吸氢动力学性能和吸放氢循环性能。结果表明,随着热处理温度的升高,LaNi4.25Al0.75/SiO2复合材料吸氢量减少,平台压升高,平台斜率略有增加,而动力学性能并无显著变化。经60次吸放氢循环后,经不同温度热处理后的样品均未出现粉化现象,且与未循环样品储氢性能基本保持一致。  相似文献   

18.
19.
Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al2O3 + TiO2 nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyväskylä. In TOF-E measurements 63Cu, 35Cl, 12C and 4He ions with energies ranging from 0.5 to 10 MeV, were used and depth profiles of the whole nanolaminate film could be analyzed down to 5 nm individual layer thickness.  相似文献   

20.
The main part of a narrow support element (NSE) of the W7-X superconducting coil system is an aluminium bronze pad, PVD coated on its spherical surface with MoS2, which slides against the flat surface of the stainless steel coil housing, coated with MoS2 spray. The operational requirements of the NSEs are: vacuum of p < 10−6 mbar, temperature T  4 K, maximum load P 1500 kN, typical displacement ≤5 mm, smooth sliding and no stick-slip events. The paper describes test results obtained with a downscaled NSE at T = 4.2 and 77 K. During the test the NSEs were submerged in liquid helium and nitrogen, respectively. Whereas the LN2 test ran smoothly for up to 15,000 cycles, the test in LHe showed stick-slip from the very first cycle. The stick-slip disappeared after 50 cycles. Post mortem analysis of the tested parts revealed that in case of LHe the sprayed MoS2 film was removed during the first 30–100 cycles by blistering and flaking. The reason for the loss of adhesion at LHe temperature is not known, several possible causes are under discussion. Further experiments under vacuum and at T 4 K are being prepared which are expected to help in clarifying the issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号