首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
Hydrogen penetration, distribution and content in palladium under low voltage glow discharge plasma, depending on plasma component structure (H2, He, Ar and their mixtures), irradiation succession and possible surface structure changes have been investigated, using mass-spectrometry, SIMS, proton-proton scattering and electron microscopy techniques. Dependences of hydrogen permeability through palladium membranes upon the plasma component structure and the preliminary irradiation dose in the inert gas atmosphere have been revealed.  相似文献   

2.
The application of various plasma and ion beam processes for the production of coatings and surface modification of materials, are reviewed. We describe, in particular, cold plasma techniques for the preparation of nitrides, carbides, oxides, bondes and so on and ion implantation techniques for modification of surfaces and interfaces by ion beam mixing to form alloys and chemical compounds on materials. Further, we present our recent collaborative studies on in situ coatings by a dc glow discharge of H2 + CH4 gas in torus devices. The carbon coatings deposited on surface probes at liner positions of TEXTOR and JIPPT-IIU are characterized in terms of depth composition profiles, chemical binding states and hydrogen concentration. Properties of these coatings produced by the dc glow discharge are compared with those by an ECR plasma and by a thermal decomposition of hydrocarbons at high temperature.Finally, our recent results on the formation of ceramics by the exposure of Tokamak plasmas and thermal heating will be discussed. TiC layers on a Ti-coated graphite probe and TiBx layers on a B-coated Ti probe were formed after the exposure to the scrape-off layer plasma in JIPPT-IIU, and TiC-TiN double layers on Ti-coated stainless steels were formed by vacuum heating at 600–1000°C.  相似文献   

3.
The first successful gaseous boronization during a pulsed discharge is reported. Sublimation of o-carborane (C2B10H12) combined with pulsed discharge plasmas with a repetition rate of 1 Hz is used to produce a hard boron-containing coating for reversed field pinch (RFP) plasmas in the Madison Symmetric Torus. X-ray photoelectron spectroscopy with Ar ion beam etching for silicon coupons installed at the plasma boundary shows about 60% boron concentration in the deposited layer. Both profilometer and scanning electron microscope analyses of the silicon coupons imply a strong toroidally non-uniform deposition depending on the location of the o-carborane injection. The layer thickness ranges from 50 to 300 nm. Ellipsometry calibrated with the profilometer results yields a refractive index of 2.2–2.3 for the films. The high refractive index implies that the coating is hard and has a well-ordered morphology. A reduction in wall recycling has consistently been observed after all boronization sessions. Comparison of the X-ray spectra in standard RFP plasmas before and after boronization indicates a slight decrease in the effective ionic charge.  相似文献   

4.
The gas flow in the ITER neutral beam injectors has been studied using a 3D Monte Carlo code to define a number of key parameters affecting the design and operation of the injector. This paper presents the results of calculations of the gas density in the two accelerator concepts presently considered as options for the ITER injectors, and the resultant stripping losses of the negative ions during their acceleration to 1 MeV. The sensitivity of the model to various parameters has been studied, including the gas temperature in the ion source and the subsequent accommodation by collisions with the accelerator structure, and the degree of dissociation of the D2 or H2 in the ion source, and subsequent recombination during collisions with the accelerator structure. Additionally the sensitivity of the losses to details of the beam source design and operating parameters are examined for both accelerator concepts.  相似文献   

5.
6.
HZr2(PO4)3 has been synthesized by the heat treatment of NH4Zr2(PO4)3 and its properties as an ion exchanger have been examined with the main focus on its alkali metal ion and lithium isotope selectivity. The distribution coefficients for alkali metal ions revealed that HZr2(PO4)3 was lithium ion-specific and showed little affinity toward potassium, rubidium or cesium ion. The lithium and sodium ion uptakes from aqueous solutions were monotonously increasing functions of pH. Isotopically, HZr2(PO4)3 was 6Li-specific. Contrary to ion uptake, the lithium isotope effect was a monotonously decreasing function of pH; a larger separation factor was observed at a lower pH. This result was consistent with the existence of two different ion exchange sites formed in lithium ion-inserted HZr2(PO4)3.  相似文献   

7.
The Oxide Electrowinning method has been studied as one of the candidate dry reprocessing concepts of the future fuel cycle systems. On the MOX co-deposition process, the main process of that method, some fundamental experiments have been performed to confirm its feasibility. In the experiments, several parameters were set to study the suitable electrolysis condition to obtain desired granule of MOX. The concentrations of uranium, plutonium, fission products(FP) simulators, and corrosion products(CP) simulators were adopted as the parameters. The blowing gas composition (O2, Cl2, Ar) during the electrolysis was also set as the variable condition. Through these experiments, it was clarified that the partial pressure of chlorine gas during electrolysis was important to obtain MOX granule with high Pu concentration (about 30%) without generating bottom precipitation in melt. Finally, adequacy of the process control method for MOX co-electrolysis was confirmed through the test using spent fast reactor(FR) fuel.  相似文献   

8.
The reduction of U3O8 pellets to UO2+x has been investigated at 1300 °C in H2, Ar and CO2 gas atmospheres by TGA, SEM, and X-ray diffraction. The selected U3O8 pellet was prepared by sintering a U3O8 powder compact. The TGA results show that the reduction rate is fastest in H2 gas, and X-ray diffraction indicates that U3O8 reduces to UO2+x without any intermediate phase. The reduced pellet, UO2+x, has a special grain structure that consists of equiaxed grains at the surface, columnar grains in the middle, and equiaxed grains in the center. The equiaxed grains and columnar grains are much smaller in H2 gas than in Ar or CO2 gas. The reducing gases significantly influence the morphology of the grain structure. This difference can be explained in terms of a relation between oxygen potential and critical nucleus size during the reduction.  相似文献   

9.
ABSTRACT

Strontium-90 is one of the most important fission products due to the potential health risks of its uptake and retention in the human body. Conventional analysis techniques involve β counting, which requires ingrowth of 90Y over a period of two weeks. Accelerator mass spectrometry (AMS) has the potential to shorten the analysis time while offering a lower limit of detection than β counting. Here, Sr in samples was recovered as SrF2 to provide sufficient negative ions in the caesium-sputtering ion source. In the sample preparation step, 95–98% of Sr was recovered and 99–100% of Zr removed by ion-exchange separation. Sr recovery was ~30% in the precipitation process, and this can be improved. A maximum 500 nA beam current of SrF3 ions was obtained from SrF2 samples mixed with PbF2. A five-anode gas ionization detector was used to avoid isobaric interference from 90Zr. The 90Sr/Sr atomic ratio background of ~6 × 10–13 (~3 mBq 90Sr) was comparable with that achieved at other AMS facilities. Good linearity in 90Sr/Sr atomic ratios was obtained from 1.75 × 10–10 to 3.38 × 10–9. Suitable techniques for sample preparation and measurement were thus achieved for 90Sr analysis by AMS.  相似文献   

10.
Powder morphology evolution of recycled U3O8 according to the thermal treatments has been studied. The defective UO2 pellets are oxidized to U3O8 powders at a conventional temperature of 350 or 450°C in air. Those powders are pressed into green pellets and then sintered at 1,500 and 1,730°C in H2 gas flow. Final reoxidized U3O8 powers are obtained by reoxidizing those sintered pellets at 450°C in air. This paper shows that the reoxidized U3O8 powder morphology and the BET surface areas are greatly dependent on the density of sintered UO2 pellets before reoxidation. Reoxidized U3O8 powders are added to virgin UO2 powders to fabricate UO2 pellets and the effect of such addition on the UO2 pellet properties is investigated. The reoxidized U3O8 powders having a certain range of BET surface area significantly promote the grain growth of UO2 pellets.  相似文献   

11.
A dc glow discharge plasma source was developed for inner surface modification of metallic tubes with an inner diameter of 10 mm. A tungsten wire of 30 μm thick was stretched inside the tube to form coaxial electrodes. DC glow discharge plasma was generated inside the tube by applying a negative high dc voltage to the tube. It was found that the length of the cylindrical plasma bulk depends linearly on the applied voltage. The electron excitation temperature of Ar plasma was measured as 12830 ± 550 K by optical emission spectroscopy method. As a preliminary application, diamond-like carbon (DLC) films were deposited onto the inner surface of stainless steel tube of 100 mm in length and 10 mm in inner diameter by using CH4/Ar mixture with 40% CH4 at 40 Pa pressure. The chemical structure of the DLC film deposited on the substrate was analyzed by Raman spectroscopy. The integrated intensity ratio (ID:IG) was obtained as 1.62 from the Raman spectra. The thickness of the DLC film deposited on the substrate was estimated as 1.5 μm by scanning electron microscopy (SEM) observation.  相似文献   

12.
Formation conditions, compositions and structures of precipitates or “the third phase” were systematically examined in the systems of Zr and radiation depleted products of TBP, such as HDBP, H2MBP, H3PO4, by means of elemental analysis, X-ray diffraction, infrared spectra and 1H-NMR. It was confirmed that one of the most important origins for the third phase is a complexation between Zr ion and the depleted products of TBP. Followings were also elucidated:

(1) When the depleted products co-exist with each other, the cooperative effects on the precipitate formation appear in low acid solutions.

(2) Precipitate formation depends on the mole ratio of HDBP/Zr. The amount of precipitate reaches the maximum at the mole ratio of approximately 2 and decreases with increasing concentration of HDBP and finally disappears at approximately 10.

(3) Precipitate formed at the mole ratio of approximately 2 has the chemical formula, Zr (NO3)2 (HDBP)2 (OH)2.

(4) Precipitates of the Zr-H2MBP system begin to appear at the concentration of H2MBP in one order of magnitude smaller than that of HDBP in Zr-HDBP system.

(5) Precipitates of Zr-H2MBP system have no NO3 ion and a basic structure of Zr-(HMBP)2(OH)2 with an interlayer distance of 16 Å.  相似文献   

13.
Aluminum Oxide (Al2O3) doped with proper activators is a highly sensitive phosphor commonly used for radiation dosimetry using thermoluminescence (TL) technique. Nanoparticles of this material activated with Chromium (Cr) have been synthesized using the propellant chemical combustion technique and studied for their TL response. They were characterized by X-ray diffraction and scanning electron microscope. The synthesized material has spherical nanoparticles with grain size around 25 nm. These nanoparticles were exposed to heavy doses from γ-rays of 137Cs. The TL glow curves show a prominent peak at around 474 K. This peak is found to be sensitive for high exposures of γ-rays and has linear response in the range of 100 Gy-20 kGy without showing saturation. This remarkable result suggests that Al2O3:Cr nanoparticles might be used for the dosimetry of food and seed irradiations.  相似文献   

14.
Tritium decontamination using ultra violet (UV) lamp and laser was performed. Simulated co-deposited layer on tungsten substrate was deposited by C2H2 or C2D2 glow discharge. The co-deposited layer was irradiated to UV lights from a xenon excimer lamp (172 nm) or ArF excimer laser (193 nm) and the in-situ decontamination behavior was evaluated by a mass spectrometer. After the UV irradiation, the hydrogen concentration in the co-deposited layer was evaluated by elastic recoil detection analysis (ERDA) and the depth profile was analyzed by secondary ion mass spectrometry (SIMS).

For the co-deposited layer formed by C2D2 glow discharge, it was found that M/e 3 (HD) gas was released mainly during the UV lamp irradiation while both M/e 3 (HD) and M/e 4 (D2) gases were detected during the UV laser irradiation. Though the co-deposited layer was not removed by UV lamp irradiation, almost all the co-deposited layer was removed by UV laser irradiation within 1 min. The ratio of hydrogen against carbon in the co-deposited layer was estimated to be 0.53 by ERDA and the number of photon needed for removing 1 fim thick co-deposited layer was calculated to be 3.7×1018 cm-2 for the UV laser by SIMS measurement. It is concluded that C-H (C-D) bond on the co-deposited layer were dissociated by irradiation of UV lamp while the co-deposited layer itself was removed by the UV laser irradiation.  相似文献   

15.
采用60 Coγ射线辐照处理污泥滤液,通过对比处理前后化学需氧量(COD)、紫外可见吸光度和浑浊度的变化,研究了辐照处理中初始pH、初始H2O2浓度和吸收剂量对污泥滤液处理效果的影响。结果表明:在相同吸收剂量和初始H2O2浓度条件下,酸性条件更利于CODCr的降低;γ辐照联合H2O2处理存在显著协同效应,吸收剂量为18.75kGy、初始H2O2浓度为2mmol/L时,污泥滤液CODcr去除率达70.4%,浑浊度下降94.9%。  相似文献   

16.
Polycrystalline tungsten was exposed to deuterium glow discharge followed by He, Ne or Ar glow discharge. The amount of retained deuterium in the tungsten was measured using residual gas analysis. The amount of desorbed deuterium during the inert gas glow discharge was also measured. The amount of retained deuterium was 2–3 times larger compared with a case of stainless steel. The ratios of desorbed amount of deuterium by He, Ne and Ar glow discharges were 4.6, 3.1 and 2.9%, respectively. These values were one order of magnitude smaller compared with the case of stainless steel. The inert gas glow discharge is not suitable to reduce the fuel hydrogen retention for tungsten walls. However, the wall baking with a temperature higher than 700 K is suitable to reduce the fuel hydrogen retention. It is also shown that the use of deuterium glow discharge is effective to reduce the in-vessel tritium inventory in fusion reactors through the hydrogen isotope exchange.  相似文献   

17.
The behaviors of CH3He+ and C2H5He+ formed by the decay of CH3T and C2H5T were studied theoretically using the STO-3G molecular orbital method and was compared with that of HHe+ in the decay of HT. It was clearly shown that the ground state daughter ions CH3He+ and C2H5He+ dissociate instantly to give CH3 + and C2H5 + because their potential energy curves are repulsive, whereas the daughter ion HHe+ in the ground state does not dissociate. The transition probability to the ground state ions of CH3He+ and of C2H5He+ are computed to be 66.5 and 64.8%, respectively. These values are in fairly good accordance with those obtained experimentally.  相似文献   

18.
ABSTRACT

Typical metal oxide corrosion products of structural materials have been irradiated with γ-rays in ultra-pure water to investigate the effect of radiation on the surface oxide and the nature of adsorbed water. Analysis techniques including thermal gravimetric analysis, differential thermal analysis, diffuse reflectance infrared Fourier transform spectroscopy, and X-ray photoelectron spectroscopy before and after γ-irradiation were employed to investigate surface structural effects and adsorbed water behaviour. The production of H2 in the oxide nanoparticle mixtures was investigated by gas chromatography to probe the mechanism of radiolysis in the water/oxide mixtures and the relationship with surface water. The nature of water at the surface of the oxides was affected by γ-radiation and the relationship was dependent on the particle composition. The rate of H2 production was shown to be oxide dependent, and higher rates of H2 formation were attributed to the decomposition of surface adsorbed water. Changes to the surface chemistry and H2 production rates were found to be highly dependent on the surface chemistry of the metal oxide nanoparticle and no bulk structural changes were observed.  相似文献   

19.
In severe accidents, large amounts of hydrogen may be released in the safety containment of a nuclear plant and the gas mixture may become explosive. The University of Pisa and ENEA have undertaken an experimental program to study the physics of flame propagation in a containment model under accident conditions. Up to now 41 deflagration tests have been performed at the HYDRO-SC facility at ambient pressure and temperature. Concentrations, water spray conditions, ignition source and gas turbulence levels were varied. The vessel volume was 0.5 m3, the ignition sources were an electrical spark discharge and an electrically heated surface (glow-plug), the hydrogen molar fractions were in the range 4–16%, the turbulence was generated by fan or spray and two different spray nozzles were utilized. The experimental data indicate that the peak pressures nearly fit the adiabatic isochoric values at the highest hydrogen concentrations and gas turbulences. Weak pressure waves were observed for H2 molar fractions greater than 10%. A careful examination of the pressure and temperature transients gave information on the flame path and on the heat transfer process during and after combustion. Scale effects on the peak pressures were not observed by comparison of the HYDRO-SC results with data obtained in other laboratories. The glow plug igniter has proved to be a reliable tool for use in deliberate ignition schemes for hydrogen control in nuclear plants.  相似文献   

20.
The creation of surface nanostructures in BaF2 (1 1 1) surfaces was studied after irradiation with slow highly charged Xe ions from the Dresden-EBIT (electron beam ion trap). After irradiation, the crystals were investigated by scanning force microscopy (SFM). Using specific ion parameters, the topographic images show nanohillocks emerging from the surface. Additionally, we used the technique of selective chemical etching to reveal the lattice damage created by ion energy deposition below and above threshold needed for surface hillocks formation. The role of both potential and kinetic energy as well as a comparison with results for swift heavy ion irradiations of BaF2 single crystals are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号