首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enthalpy increment measurements on La2Te3O9(s) and La2Te4O11(s) were carried out using a Calvet micro-calorimeter. The enthalpy values were analyzed using the non-linear curve fitting method. The dependence of enthalpy increments with temperature was given as: (T) − (298.15 K) (J mol−1) = 360.70T + 0.00409T2 + 133.568 × 105/T − 149 923 (373 ? T (K) ? 936) for La2Te3O9 and (T) − (298.15 K) (J mol−1) = 331.927T + 0.0549T2 + 29.3623 × 105/T − 114 587 (373 ? T (K) ? 936) for La2Te4O11.  相似文献   

2.
Non-leaky planar waveguide structure has been fabricated in x-cut BiB3O6 crystal by 6 MeV C3+ ion implantation at a dose of 1 × 1014 ions/cm2. The effective refractive indices of the waveguide are measured at a wavelength of 632.8 nm. We perform a computer code based on the finite difference method to reconstruct the refractive index profiles of nx and ny of this waveguide. The beam propagation method is used to calculate the electric and magnetic field profiles in the waveguide region from the reconstructed refractive index profiles. Our simulated data show that the refractive index increased waveguide layer can confine the mode completely.  相似文献   

3.
The kinetics of CRUD oxidation by H2O2 has been studied using aqueous suspensions of metal oxide powder. Fe3O4, Fe2CoO4 and Fe2NiO4 were used as model compounds for CRUD. In addition, the activation energies for the reaction between H2O2 and the three CRUD models were determined. The rate constants at room temperature were determined to 6.6 (±0.4) × 10−9, 3.4 (±0.4) × 10−8 and 1.6 × 10−10 m min−1 for Fe3O4, Fe2CoO4 and Fe2NiO4, respectively. The corresponding activation energies are 52 ± 4, 44 ± 5 and 57 ± 7 kJ mol−1, respectively. The mechanism of the reaction is briefly discussed indicating that the final solid product in all three cases is Fe2O3. In addition to the experimental studies, the theoretical grounds for kinetics of reactions in particle suspensions are discussed. The theoretical discussion is also used to explain the somewhat unexpected trends in reactivity observed experimentally.  相似文献   

4.
The electrical properties of annealed, fully metamict gadolinite REEFe2+Be2Si2O10 are studied as a function of annealing temperature. Changes due to annealing are also probed by 57Fe Mössbauer spectroscopy and X-ray diffraction. The electrical conductivity measured at = 100 Hz between 110 and 750 K varies markedly, ranging from 10−10 to 10−6 S m−1 for untreated samples and 10−9 to 10−3 S m−1 for sample annealed in argon at 1373 K. Average measured activation energies for electrical conduction are 0.47 and 0.63 eV for ranges of 400-450 K and 500-600 K, respectively. The dielectric permittivity shows strong dispersion effects above 235 K. After high temperature annealing, the electrical conductivity shows a marked dispersion below 604 K. The combination of polaron hopping and hydroxyl anion migration is proposed for the electrical conduction mechanism.  相似文献   

5.
The sample of pyrochlore-based ceramic doped with a 244Cm isotope with a target composition Gd1.935Cm0.065 TiZrO7 was prepared by cold pressing and sintering. The pyrochlore structure phase was predominant in the sample but minor perovskite and gadolinium zirconate (ideally Gd2Zr2O7−x) were also present. The Ti/Zr pyrochlore phase was rendered amorphous at a dose of 4.6 × 1018 α-decays/g (0.60 dpa). Volume expansion of the pyrochlore lattice was found to be 2.7 vol.% at a dose of 3.85 × 1018 α-decays/g.  相似文献   

6.
The present study shows simultaneous surface ionisation and electron impact ionisation during the formation and investigation of endohedral fullerenes 99mTc@C60 and 99mTc@C70. The endohedral fullerenes were generated using a mass spectrometer with a triple rhenium filament as an ion source. The ionisation energies (IE) determined were: 8.52 ± 0.25 eV for 99mTc@C60 and 9.57 ± 0.25 eV for 99mTc@ C70.  相似文献   

7.
The dependence of the oxygen potentials on oxygen non-stoichiometry and temperature of Am0.5Pu0.5O2−x has been obtained by the electromotive force (EMF) method with the cell: (Pt) air |Zr(Ca)O2−x| Am0.5Pu0.5O2−x (Pt). The x value of Am0.5Pu0.5O2−x was changed at 1333 K over 0.02 < x ? 0.25 by the coulomb titration method. The temperature dependence of the oxygen potential was also measured over the range of 1173-1333 K. It was found that the oxygen potential decreased from −80 to −360 kJ mol−1 with increasing x from 0.021 to 0.22 at 1333 K and that it remained almost constant at −360 kJmol−1 around x = 0.23. It was concluded that Am0.5Pu0.5O2−x should be composed of the single fluorite-type phase over 0.02 < x ? 0.22 and the mixed phases of fluorite-type and (Am, Pu)9O16 at around x = 0.23.  相似文献   

8.
The reactivity of H2 towards UO22+ has been studied experimentally using a PEEK coated autoclave where the UO22+ concentration in aqueous solution containing 2 mM carbonate was measured as a function of time at pH2∼40 bar. The experiments were performed in the temperature interval 74-100 °C. In addition, the suggested catalytic activity of UO2 on the reduction of UO22+ by H2 was investigated. The results clearly show that H2 is capable of reducing UO22+ to UO2 without the presence of a catalyst. The reaction is of first order with respect to UO22+. The activation energy for the process is 130 ± 24 kJ mol−1 and the rate constant is k298K=3.6×10−9 l mol−1 s−1. The activation enthalpy and entropy for the process was determined to 126 kJ mol−1 and 16.5 J mol−1 K−1, respectively. Traces of oxygen were shown to inhibit the reduction process. Hence, the suggested catalytic activity of freshly precipitated UO2 on the reduction of UO22+ by H2 could not be confirmed.  相似文献   

9.
The results of present paper have shown that sputtering of yttrium iron garnet (Y3Fe5O12) under swift heavy ions in the electronic energy loss regime is non-stoichiometric. Here we are presenting additional experimental results for gadolinium gallium garnet (Gd3Ga5O12) as target. The irradiations were performed with different ions (50Cr (589 MeV), 86Kr (195 MeV) and 181Ta (400 MeV)) impinging perpendicularly to the surface. As earlier, the sputtering yield was determined by collecting the emitted gadolinium and gallium atoms on a thin aluminium foil, placed upstream above the target and analyzing the Al catcher by Rutherford backscattering. Also for Gd3Ga5O12, the emission of Gd and Ga is non-stoichiometric. Sputtering appears above a critical electronic stopping power of Sth = 11.6 ± 1.5 keV/nm, which is larger than the threshold for track formation, in agreement with other amorphisable materials. In addition, the angular distribution of the sputtered species was measured for Y3Fe5O12 and Gd3Ga5O12 using 200 MeV Au ions impinging the surface at 20° relatively to the surface. For the two garnets the ratio of Y/Fe (and Gd/Ga) varies with the angle of emitted species and the stoichiometry seems to be preserved only for an emission perpendicular to the surface.  相似文献   

10.
We have recently synthesized “stuffed” (i.e., excess Lu) Lu2(Ti2−xLux)O7−x/2 (x = 0, 0.4 and 0.67) compounds using conventional ceramic processing. X-ray diffraction measurements indicate that stuffing more Lu3+ cations into the oxide structure leads eventually to an order-to-disorder (O-D) transition, from an ordered pyrochlore to a disordered fluorite crystal structure. At the maximum deviation in stoichiometry (x = 0.67), the Lu3+ and Ti4+ ions become completely randomized on the cation sublattices, and the oxygen “vacancies” are randomized on the anion sublattice. Samples were irradiated with 400 keV Ne2+ ions to fluences ranging from 1 × 1015 to 1 × 1016 ions/cm2 at cryogenic temperatures (∼77 K). Ion irradiation effects in these samples were examined by using grazing incident X-ray diffraction. The results show that the ion irradiation tolerance increases with disordering extent in the non-stoichiometric Lu2(Ti2−xLux)O7−x/2.  相似文献   

11.
ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beamline of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by transmission electron microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5 × 1012 cm−2 up to a total amorphisation between 1 × 1013 and 1 × 1014 cm−2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV nm−1.  相似文献   

12.
The infrared absorption spectra of PbO-Al2O3-B2O3-SiO2 glasses have been measured in the spectral range 600-4000 cm−1 before and after absorbed dose of 50 Gy, 4 kGy and 50 kGy to investigate the structural change due to irradiation. The structural change due to composition has also been discussed. The experimental results clearly indicate that after irradiation, a significant change in structure of lead alumino borosilicate glass network is observed. It was shown that BO4 groups decreases and BO3 groups increases with the increase of Al2O3.  相似文献   

13.
The interface of thin Lu2O3 on silicon has been studied using high-resolution RBS (HRBS) for samples annealed at different temperatures. Thin rare earth metal oxides are of interest as candidates for next generation transistor gate dielectrics, due to their high-k values allowing for equivalent oxide thickness (EOT) of less than 1 nm. Among them, Lu2O3 has been found to have the highest lattice energy and largest band gap, making it a good candidate for an alternative high-k gate dielectric. HRBS depth profiling results have shown the existence of a thin (∼2 nm) transitional silicate layer beneath the Lu2O3 films. The thicknesses of the Lu2O3 films were found to be ∼8 nm and the films were determined to be non-crystalline. Angular scans were performed across the [1 1 0] and [1 1 1] axis along planar channels, and clear shifts in the channeling minimum indicate the presence of Si lattice strain at the silicate/Si interface.  相似文献   

14.
The effect of irradiation by 50 MeV Li3+ and 200 MeV Ag15+ ions on single crystals of Tl2Ca2Ba2Cu3O10 (Tl2223) superconductor has been investigated at different fluences. Isothermal magnetization hysteresis loops have been recorded at different temperatures using a SQUID magnetometer and the effect of irradiation on the critical current density, irreversible field, second magnetization peak and pinning force has been studied. Irradiation by 200 MeV Ag15+ ions resulted in increased hysteresis and irreversibility field while no change in second magnetization peak position and critical temperature was observed. A broadening in the hysteresis loop before the second magnetization peak was also observed for the crystals irradiated by Li3+ ions. Annealing of irradiated crystals at 500 °C resulted in reduction of point defects created by Li3+ ions.  相似文献   

15.
Magnesium stannate spinel (Mg2SnO4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg2SnO4 was achieved at an ion dose of 5 × 1019 Kr ions/m2 at 50 K and 1020 Kr ions/m2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr2+ ions in Mg2SnO4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg2SnO4 was finally compared with normal spinel MgAl2O4.  相似文献   

16.
The thermoelectric power (TEP) of a ferromagnet U2ScB6C3 (TC = 61 K) has been measured in the temperature range 5-300 K. The TEP is positive over the whole measured temperature range and reaches a relatively large value at room temperature of 29 μV/K. Below 30 K and above 200 K the TEP follows a straight line S(T) ∼AT, with slope of 0.23 and 0.085 μV/K2, respectively. The change in the slope can be explained by the electron-phonon interaction renormalization effects or spin-reorientation associated with a change in the electronic structure. Analysing the temperature dependence of the ratio [S(T)/T]/[S300 K/300] and taking into account the specific heat data, we suggest that spin fluctuations are another important factor in determining the thermoelectric power behaviour of U2ScB6C3.  相似文献   

17.
Silicon nitride layers of 140 nm thickness were deposited on silicon wafers by low pressure chemical vapour deposition (LPCVD) and irradiated at GANIL with Pb ions of 110 MeV up to a maximum fluence of 4 × 1013 cm−2. As shown in a previous work these irradiation conditions, characterized by a predominant electronic slowing-down (Se = 19.3 keV nm−1), lead to damage creation and formation of etchable tracks in Si3N4. In the present study we investigated other radiation-induced effects like out of plane swelling and refractive index decrease. From profilometry, step heights as large as 50 nm were measured for samples irradiated at the highest fluences (>1013 cm−2). From optical spectroscopy, the minimum reflectivity of the target is shifted towards the high wavelengths at increasing fluences. These results evidence a concomitant decrease of density and refractive index in irradiated Si3N4. Additional measurements, performed by ellipsometry, are in full agreement with this interpretation.  相似文献   

18.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

19.
In the course of the licensing procedure of the ‘Forschungsneutronenquelle Heinz Maier-Leibnitz’, i.e. the new 20 MW high-flux research reactor FRM II in Garching near Munich, extensive test irradiations have been performed to qualify the U3Si2-Al dispersion fuel with a relatively high density of highly enriched uranium (93 wt% of 235U) up to very high fission densities. Two of the three FRM II type fuel plates used in the irradiation tests contained U3Si2-Al dispersion fuel with HEU densities of 3.0 gU/cm3 or 1.5 gU/cm3 (‘homogeneous plates’) and one plate had two adjacent zones of either density (‘mixed plate’). They were irradiated in the French MTR reactors SILOE and OSIRIS in the years before 2002. The local plate thickness was measured on certain tracks along the plates during interruptions of the irradiation. The maximum fission density obtained in the U3Si2 fuel particles was 1.4 × 1022 f/cm3 and 1.1 × 1022 f/cm3 in the 1.5 gU/cm3 and 3.0 gU/cm3 fuel zones, respectively. In the course of the irradiations, the plate thickness increased monotonically and approximately linearly, leading to a maximum plate thickness swelling of 14% and 21% and a corresponding volume increase of the fuel particles of 106% and 81%, respectively. Our results are discussed and compared with the data from the literature.  相似文献   

20.
Single-crystalline InP(1 0 0) substrate was implanted by 30 keV Ga+ ions with fluences of 1 × 1016-1.5 × 1017 cm−2 followed by post-annealing treatment at 750 °C to recover implantation-induced structural defects and activate dopants into the lattices. The optical property, composition, and microstructure of the Ga+-implanted InP were studied by Raman spectroscopy and transmission electron microscopy (TEM). Raman spectra show that the InxGa1−xP phase is formed at a critical fluence of 7 × 1016 cm−2. The newly grown phase was identified with the appearance of Ga rich TOInP and In rich TOGaP modes of a random alloy in the 1 bond-2 phonon mode configuration along with TEM structural identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号