首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
煤制天然气采用耐硫甲烷化催化剂,减小了反应设备体积,对节省投资和降低能耗有积极意义。采用等体积浸渍法制备系列Mo-Ni/γ-Al2O3耐硫甲烷化催化剂,并对催化剂活性及耐硫性进行评价,考察浸渍液中不同Co和W元素添加量对催化剂活性的影响。结果表明,耐硫甲烷化催化剂活性中心MoS2和WS2的生成有利于提高CO转化率和CH4选择性,促进合成气生成CH4,Co的添加不利于提高催化剂的CO转化率和CH4选择性,而W元素的添加有利于提高催化剂的CO转化率和CH4选择性。在反应温度550℃、压力2 MPa和空速1 800 h-1条件下,n(H2)∶n(CO)=1∶1时,CO转化率为64.24%,CH4选择性为52.00%。n(H2)∶n(CO)=3∶1时,CO转化率为77.90%,CH4选择性为68.41%。  相似文献   

2.
对CH4-H2体系进行了热力学分析,并与大气压反常辉光放电条件下得到的实验结果相比较。通过热力学分析,得出体系的独立反应、各反应平衡常数与温度的关系,体系的平衡组成中主要产物为炭黑和氢;温度500~1 500 K,积炭是影响甲烷高温热解的主要问题,且几乎无乙炔和乙烯生成。但在大气压反常辉光放电的条件下,反应体系温度约为700~1 000 K,甲烷转化率较高,且反应中的产物主要为C2烃。实验结果表明,当原料气总流量为300 mL/m in,CH4/H2为2∶8时,甲烷转化率、乙炔选择性和乙烯选择性最大,分别为91.3%、81.7%和11.1%,此时积炭速度小,仅为1.47 mg/m in。比较表明,大气压反常辉光放电条件下CH4-H2等离子体反应已超出热力学平衡限制。  相似文献   

3.
《化学工程》2016,(8):42-47
通过分析绝热反应曲线和反应过程CO转化率曲线,设计可行的多级绝热固定床甲烷化工艺流程,得到了一个第一甲烷化反应器循环比为3.0,反应器个数为3的甲烷化反应系统。建立绝热固定床反应器的一维拟均相数学模型,在工业操作条件下,分析了该流程中3个甲烷化反应器内的温度和摩尔分数分布规律。在合成气的进料速度800 kmol/h,进料温度553 K,操作压力为3.0 MPa,氢碳物质的量比约为3.0,循环比为3.0的条件下,模拟结果表明:物料在3个反应器出口的温度分别为879,725,611 K;甲烷干基摩尔分数分别为53.48%,79.24%和95.49%;CO在3个反应器出口的转化率分别为82.18%,99.41%和100%。第3反应器出口CH4干基摩尔分数为95.49%,满足了工业生产要求。  相似文献   

4.
考察了钼基耐硫甲烷化催化剂在不同反应温度下的催化活性,结果表明反应温度在560℃附近时甲烷化活性最高。在此温度下研究了空速、原料气中H2S、H2O、CO2、CH4、H2/CO等浓度对反应活性的影响,结果表明,原料气中H2S含量的增加有利于提高催化剂的甲烷化反应活性;H2O的加入促进了水煤气变换反应的进行但抑制了甲烷化反应,因此CO转化率虽没有下降但甲烷化效率却有所降低;添加CH4对甲烷化反应没有明显影响,而添加CO2则明显抑制了甲烷的生成。结合催化剂表征结果进一步对各因素的影响机理进行了分析,这为耐硫甲烷化工艺条件优化及催化剂设计提供了重要依据。  相似文献   

5.
《化工设计通讯》2015,(4):18-22
近年来,受天然气需求增加和环保压力影响,煤制天然气和焦炉煤气制天然气成为能源领域研究热点,而甲烷化技术是煤制天然气和焦炉煤气制天然气相关技术的核心之一。采用Aspen Plus模拟软件,模拟选取7组典型甲烷化反应原料气,研究了原料气组分变化对甲烷化反应温度和总碳转化率的影响。研究结果表明:绝热甲烷化反应器出口温度随着H2、CO的浓度增加而增加,随着CH4、CO2、N2和H2O浓度增加而降低,其中CH4和H2O的变化影响较为显著,所以在工艺流程设计和现场装置操作时,选取CH4和H2O作为甲烷化反应的主要控制手段。∑CO+CO2的总碳转化率随着原料气中CO、CO2浓度的增加而降低,随H2浓度增加而快速增加,而与N2、CH4和H2O的浓度影响较小。研究结果既可作为甲烷工艺设计的技术基础,也可对甲烷化现场装置的安全操作提供技术指导,促进煤制气产业的健康、快速发展。  相似文献   

6.
近年来,受天然气需求增加和环保压力影响,煤制天然气和焦炉煤气制天然气成为能源领域研究热点,而甲烷化技术是煤制天然气和焦炉煤气制天然气相关技术的核心之一。文章采用Aspen Plus模拟软件,模拟选取7组典型甲烷化反应原料气,研究了原料气组分变化对甲烷化反应温度和总碳转化率的影响。研究结果表明:绝热甲烷化反应器出口温度随着H2、CO的浓度增加而增加,随着CH4、CO2、N2和H2O浓度增加而降低,其中CH4和H2O的变化影响较为显著,所以在工艺流程设计和现场装置操作时,选取CH4和H2O作为甲烷化反应的主要控制手段。∑CO+CO2的总碳转化率随着原料气中CO、CO2浓度的增加而降低,随H2浓度增加而快速增加,而与N2、CH4和H2O的浓度影响较小。文章研究结果既可作为甲烷工艺设计的技术基础,也可对甲烷化现场装置的安全操作提供技术指导,促进煤制气产业的健康、快速发展。  相似文献   

7.
研究了负载催化剂的内蒙褐煤煤焦对CO甲烷化反应的催化性能。在加压固定床反应器中比较了Ni,Co,K,Fe,Na,Ca等催化剂种类对甲烷化反应的影响,并在气化反应工艺条件范围内考察了温度、压力、CO和H_2分压、空速等条件对CO转化率和甲烷收率的影响。研究结果表明:负载催化剂煤焦对甲烷化反应具有明显的催化作用,其中金属元素K在气化甲烷化反应过程中拥有较好的双重催化作用。在反应温度600~700℃时,CO转化率和甲烷收率随着反应温度的升高而增加,表明甲烷化反应仍处于动力学控制,未达到热力学平衡。压力的增加能够显著提高CO转化率和甲烷收率,甲烷收率由0.5 MPa下的25.8%升高至3.5 MPa下的56.65%,但甲烷收率的增幅逐渐减小。CO和H_2分压的增加以及空速的降低,均能够提高反应深度,促进甲烷化反应的进行。H_2/CO摩尔比的增加,能够强化CO的转化并使甲烷收率增加。基于Langmuir-Hinshelwood模型拟合得到了负载碳酸钾催化剂煤焦的甲烷化反应动力学方程。  相似文献   

8.
钟朋展  孟凡会  崔晓曦  刘军  李忠 《化工进展》2013,(8):1845-1848,1875
以3种不同镍盐(硝酸镍、乙酸镍和氯化镍)为前体,采用等体积浸渍法制备了双金属Ni-Fe/γ-Al2O3催化剂,分别记作Ni-Fe-N、Ni-Fe-Ac和Ni-Fe-Cl,在浆态床反应装置上对各催化剂CO甲烷化催化活性进行评价。结果表明,Ni-Fe-N甲烷化催化活性最高,CO转化率、CH4选择性分别为97.2%和87.3%;而Ni-Fe-Cl甲烷化催化活性最低,CO转化率、CH4选择性分别为47.3%和58.7%。通过XRD、H2-TPR和CO-TPD等表征技术探讨了催化剂的微观结构与甲烷化催化活性之间的关系,发现Ni-Fe-N甲烷化活性高的原因是NiO晶粒小、分散好,Ni与Fe之间具有较好的协同作用,并且CO吸附量大。  相似文献   

9.
以天然玄武岩为甲烷裂解催化剂,通过XRF、XRD、SEM及XPS对催化剂组成、结构、表面活性物种进行了研究。利用固定床反应装置考察了不同反应温度、空速条件下玄武岩催化甲烷裂解制C_2烃的效果。结果表明,在气体空速为4 L·h-1条件下,当反应温度为1 225 K时,甲烷的转化率为7.66%,C_2烃的选择性为33.64%;当反应温度升至1 325 K时,甲烷的转化率可达17.13%,同时C_2烃的选择性为27.21%。相同温度下,气体空速越大,乙烷的选择性越高,乙炔的选择性越低。催化剂活性因表面积炭的产生而降低,积炭类型为芳烃积炭。  相似文献   

10.
为明确煤气/富氧大当量比燃烧过程中煤气各可燃组分间氧化剂竞争机制及其对内热火焰温度和干馏介质成分的影响,对该反应体系进行了热力学分析.结果表明:各组分的燃烧优先度随反应温度而变化,低温(<849 K)下CO优先燃烧,高温(>1143 K)下CH4优先燃烧;除选择性燃烧外,甲烷化和甲烷重整反应在800 K~1000 K发...  相似文献   

11.
以焦炉煤气(COG,coke oven gas)为燃料,研究了CaSO4载氧体在燃料反应器(FR,fuel reactor)内的还原性,从原子层面对反应路径进行了探讨分析。当反应温度较低时(100~300℃),主要发生CO-H2甲烷化反应和CH4-CaSO4热化学硫酸盐还原反应,CaCO3与H2S是该温度范围内的主要产物。当反应温度较高时(400~1000℃),CaSO4与CO、H2和CH4之间的还原反应占据了主导地位,CaS、H2O和CO2是该温度范围内的主要产物。当反应温度进一步升高时(1000~1400℃),CaSO4与CaS发生固固反应生成大量的副产物SO2和CaO。温度和压力对产物中硫化物的分布有很大影响,在反应温度为1000℃,压力为0.1 MPa时,焦炉煤气的燃烧反应进行的很充分,但是反应在加压条件下进行时,CaSO4、CaS和H2S含量会有明显的下降,而SO2含量有一定程度的增加。  相似文献   

12.
The performance characteristics of isothermal fluidized bed syngas methanation for substitute natural gas are investigated over a self-made Ni–Mg/Al2O3 catalyst. Via atmospheric methanation in a laboratory fluidized bed reactor it was clarified that the CO conversion varied in 5% when changing the space velocity in 40–120 L·g?1·h?1 but the conversion increased obviously by raising the superficial gas velocity from 4 to 12.4 cm·s?1. The temperature at 823 K is suitable for syngas methanation while obvious deposition of uneasy-oxidizing Cγoccurs on the catalyst at temperatures around 873 K. From a kinetic aspect, the lowest reaction temperature is suggested to be 750 K when the space velocity is 60 L·g?1·h?1. Raising the H2/CO ratio of the syngas increased proportionally the CO conversion and CH4 selectivity, showing that at enough high H2/CO ratios the active sites on the catalyst are sufficient for CO adsorption and in turn the reaction with H2 for forming CH4. Introducing CO2 into the syngas feed suppresses the water gas shift and Boudouard reactions and thus increased H2 consumption. The ratio of CO2/CO in syngas should be better below 0.52 because varying the ratio from 0.52 to 0.92 resulted in negligible increases in the H2 conversion and CH4 selectivity but decreased the CH4 yield. Introducing steam into the feed gas affected little the CO conversion but decreased the selectivity to CH4. The tested Ni–Mg/Al2O3 catalyst manifested good stability in structure and activity even in syngas containing water vapor.  相似文献   

13.
模拟工业装置的工艺条件,考察了原料气中CO和H2S含量、温度和水气比等因素对耐硫变换催化剂COS转化活性和甲硫醇生成量的影响。结果表明,当原料气中CO和H2S含量较高时,会有甲硫醇生成,且其生成量随着CO和H2S含量增加而增加;受平衡的影响,原料气中H2S含量升高时,COS转化率降低;增加反应温度,可以提高COS的氢解反应活性,并减少甲硫醇的生成,但不利于COS的水解反应。水气比具有提高COS转化活性并减少甲硫醇生成的双重作用:水气比较低时,其值从0增加到0.2,COS转化率从89.65%增加到97.82%,表明COS的水解反应比氢解反应更容易进行;当水气比为0.3时,反应后的尾气中只有微量甲硫醇生成,当水气比大于0.4时,反应后几乎无甲硫醇生成。  相似文献   

14.
中低温换热式焦炉气合成天然气新工艺   总被引:1,自引:0,他引:1  
焦炉气经净化、加热之后,采用不循环一次性通过或少量循环、不补加蒸汽的2种不同试验工况,直接进入中低温换热式反应器进行甲烷化反应,合成的天然气减压后送煤气管网,催化剂床层温度通过汽包压力控制。2种不同工况经72 h考核,CO转化率达100%,CO2转化率达~99%。  相似文献   

15.
焦炉煤气作为优质的二次能源,利用焦炉煤气甲烷化合成天然气(SNG)是焦炉煤气资源化利用的最佳方式。借助Aspen Plus软件,采用BWRS状态方程,设定主要工艺参数,对绝热式三段固定床焦炉煤气甲烷化工艺进行模拟计算分析,通过调节循环率和水蒸汽添加量控制反应器出口温度,模拟结果与实际试验数据较吻合,证明模拟可靠。考察了循环率、分流率、原料气组成、进口气压力和空速对反应器出口温度和组成的影响,结果表明循环率和分流率对反应器出口温度和转化率影响明显。  相似文献   

16.
Concerns about the depletion and increasing price of natural gas are generating interest in the technology of synthetic natural gas (SNG) production. SNG can be produced by the methanation reaction of synthesis gas obtained from coal gasification; this methanation reaction is the crucial procedure for economical production of SNG. We investigated the effect of operating parameters such as the reaction temperature, pressure, and feed compositions (H2/CO and CO2/CO ratios) on the performance of the methanation reaction by equilibrium model calculations and dynamic numerical model simulations. The performance of the methanation reaction was estimated from the CO conversion, CO to CH4 conversion, and CH4 mole fraction in the product gas. In general, a lower temperature and/or higher pressure are favorable for the enhancement of the methanation reaction performance. However, the performance becomes poor at low temperatures below 300 °C and high pressures above 15 atm because of limitations in the reaction kinetics. The smaller the amount of CO2 in the feed, the better the performance, and an additional H2 supply is essential to increase the methanation reaction performance fully.  相似文献   

17.
针对矿井回风流中的低浓度瓦斯进行回收技术的研究,利用FLUENT软件,建立物理模型和数学模型,针对陶瓷蜂窝蓄热氧化装置的情况,对乏风中的甲烷浓度,蜂窝陶瓷的孔隙率,乏风的风量对低浓度瓦斯氧化效果的影响进行研究,研究结果表明:乏风中甲烷浓度要适中才能更好的氧化效果,浓度过大影响CH4的转化率;蜂窝陶瓷的孔隙率越大越有利于乏风中甲烷的转化;乏风量对CH4的转化有着重要的影响,风量应当适中,不宜太大或者太小。  相似文献   

18.
由于CO甲烷化的快速表面反应、强放热特性,相比固定床,采用小颗粒催化剂的流化床甲烷化技术在反应活性和催化剂稳定性方面具有明显的技术优势。从高耐磨催化剂、流化床反应器及其创新、短流程两段甲烷化技术构建及其验证等方面总结了流化床甲烷化技术开发的最新进展。优化催化剂前体制备方法、调变催化剂组成可获得具有较高骨架强度和均匀性的催化剂一次微粒,进而通过优化的喷雾造粒工艺和填充黏结剂,制备出具有可调变粒度分布、高强度和高球形度的流化床用粉末催化剂,但其黏结剂的添加明显影响催化剂的低温活性。通过改性如Al2O3和FCC催化剂的球形颗粒,进而负载活性组分,开发了制备高活性、磨损指数小于1.5的流化床甲烷化Ni基催化剂的另一种技术方法。实验室研究证实了流化床甲烷化反应速率极快,在分布板上数毫米处即可实现可能的最高转化率,且在转化率和催化剂稳定性方面明显优于固定床,不仅由于流态化催化剂床层温度均匀,而且催化剂在床层内不停循环,加快了颗粒表面的更新。增大空速和表观气速,流化床的催化剂床层膨胀,反应气体与催化剂颗粒表面间的有效接触面积增加,使得流化床甲烷化对空速和表观气速的可调范围大。操作在更高气速条件的输送床甲烷化避免了操作气速的上限限制,可大幅降低反应器尺寸,有效提高单位截面的原料气负荷能力。输送床甲烷化可采用高热导率的催化剂颗粒传递反应热,相对于气体移热效率高、能力大。流化床甲烷化已在生物废弃物利用和焦炉煤气甲烷化方面开展了侧线示范,形成了相对多段绝热固定床工艺更简单的短流程两段甲烷化新工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号