首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new compounds (LY293558 and LY294486), that antagonize homomeric human GluR5 receptors, were examined against responses mediated by kainate receptors in the CA3 region of rat hippocampal slices. Both compounds (applied at a concentration of 10 microM) antagonized reversibly currents induced by 200 nM kainate. They also antagonized reversibly the synaptic activation of kainate receptors, evoked by high-frequency stimulation of mossy fibres, in the presence of NMDA and AMPA receptor antagonists. These results show that GluR5 subunits are likely to contribute to a kainate receptor on CA3 neurones that mediates responses to both kainate and synaptically-released L-glutamate.  相似文献   

2.
We have examined the membrane localization of an AMPA receptor subunit (GluR1) and an NMDA receptor subunit (NR1) endogenously expressed in primary cultures of rat hippocampal neurons. In unstimulated cultures, both GluR1 and NR1 subunits were concentrated in SV2-positive synaptic clusters associated with dendritic shafts and spines. Within 5 min after the addition of 100 microM glutamate to the culture medium, a rapid and selective redistribution of GluR1 subunits away from a subset of synaptic sites was observed. This redistribution of GluR1 subunits was also induced by AMPA, did not require NMDA receptor activation, did not result from ligand-induced neurotoxicity, and was reversible after the removal of agonist. The activation-induced redistribution of GluR1 subunits was associated with a pronounced (approximately 50%) decrease in the frequency of miniature EPSCs, consistent with a role of GluR1 subunit redistribution in mediating rapid regulation of synaptic efficacy. We conclude that ionotropic glutamate receptors are regulated in native neurons by rapid, subtype-specific membrane trafficking, which may modulate synaptic transmission in response to physiological or pathophysiological activation.  相似文献   

3.
Kainic acid (KA) induces status epilepticus and delayed neurodegeneration of CA3 hippocampal neurons. Downregulation of glutamate receptor 2 (GluR2) subunit mRNA [the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) subunit that limits Ca2+ permeability] is thought to a play role in this neurodegeneration, possibly by increased formation of Ca2+ permeable AMPA receptors. The present study examined early hippocampal decreases in GluR2 mRNA and protein following kainate-induced status epilepticus and correlated expression changes with the appearance of dead or dying cells by several histological procedures. At 12 h, in situ hybridization followed by emulsion dipping showed nonuniform decreases in GluR2 mRNA hybridization grains overlying morphologically healthy-appearing CA3 neurons. GluR1 and N-methyl-D-aspartate receptor mRNAs were unchanged. At 12-16 h, when little argyrophilia or cells with some features of apoptosis were detected by silver impregnation or electron microscopy, single immunohistochemistry with GluR2 and GluR2/3 subunit-specific antibodies demonstrated a pattern of decreased GluR2 receptor protein within CA3 neurons that appeared to predict a pattern of damage, similar to the mRNA observations. Double immunolabeling showed that GluR2 immunofluorescence was depleted and that GluR1 immunofluorescence was sustained in clusters of the same CA3 neurons. Quantitation of Western blots showed increased GluR1:GluR2 ratios in CA3 but not in CA1 or dentate gyrus subfields. Findings indicate that the GluR1:GluR2 protein ratio is increased in a population of CA3 neurons prior to significant cell loss. Data are consistent with the "GluR2 hypothesis" that reduced expression of GluR2 subunits will increase formation of AMPA receptors permeable to Ca2+ and predict vulnerability to a particular subset of pyramidal neurons following status epilepticus.  相似文献   

4.
Both theoretical and experimental work have suggested that central neurons compensate for changes in excitatory synaptic input in order to maintain a relatively constant output. We report here that inhibition of excitatory synaptic transmission in cultured spinal neurons leads to an increase in mEPSC amplitudes, accompanied by an equivalent increase in the accumulation of AMPA receptors at synapses. Conversely, increasing excitatory synaptic activity leads to a decrease in synaptic AMPA receptors and a decline in mEPSC amplitude. The time course of this synaptic remodeling is slow, similar to the metabolic half-life of neuronal AMPA receptors. Moreover, inhibiting excitatory synaptic transmission significantly prolongs the half-life of the AMPA receptor subunit GluR1, suggesting that synaptic activity modulates the size of the mEPSC by regulating the turnover of postsynaptic AMPA receptors.  相似文献   

5.
6.
The cellular distributions of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors within the rodent and nonhuman primate basal forebrain magnocellular complex (BFMC) were demonstrated immunocytochemically using anti-peptide antibodies that recognize glutamate receptor (GluR) subunit proteins (i.e., GluR1, GluR4, and a conserved region of GluR2, GluR3, and GluR4c). In both species, many large GluR1-positive neuronal perikarya and aspiny dendrites are present within the medial septal nucleus, the nucleus of the diagonal band of Broca, and the nucleus basalis of Meynert. In this population of neurons in rat and monkey, GluR2/3/4c and GluR4 immunoreactivities are less abundant than GluR1 immunoreactivity. In rat, GluR1 does not colocalize with ChAT, but, within many neurons, GluR1 does colocalize with GABA, glutamic acid decarboxylase (GAD), and parvalbumin immunoreactivities. GluR1- and GABA/GAD-positive neurons intermingle extensively with ChAT-positive neurons. In monkey, however, most GluR1-immunoreactive neurons express ChAT and calbindin-D28 immunoreactivities. The results reveal that noncholinergic GABAergic neurons, within the BFMC of rat, express AMPA receptors, whereas cholinergic neurons in the BFMC of monkey express AMPA receptors. Thus, the cellular localizations of the AMPA subtype of GluR are different within the BFMC of rat and monkey, suggesting that excitatory synaptic regulation of distinct subsets of BFMC neurons may differ among species. We conclude that, in the rodent, BFMC GABAergic neurons receive glutamatergic inputs, whereas cholinergic neurons either do not receive glutamatergic synapses or utilize GluR subtypes other than AMPA receptors. In contrast, in primate, basal forebrain cholinergic neurons are innervated directly by glutamatergic afferents and utilize AMPA receptors.  相似文献   

7.
Glutamate receptors mediate most excitatory synaptic transmission in the adult vertebrate brain, but their activation in developing neurons also influences developmental processes. However, little is known about the developmental regulation of the subunits composing these receptors. Here we have studied age-dependent changes in the expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits in the cochlear nucleus complex (CN), the superior olivary complex (SOC), the nuclei of the lateral lemniscus, and the inferior colliculus of the developing rat. In the lateral superior olive, the medial nucleus of the trapezoid body, and the ventral nucleus of the lateral lemniscus, the distribution of AMPA receptor subunits changed drastically with age. While GluR1 and GluR2 subunits were highly expressed in the first 2 postnatal weeks, GluR4 staining was detectable only thereafter. GluR1 and GluR2 immunoreactivities rapidly decreased during the third postnatal week, with the GluR1 subunits disappearing from most neurons. In contrast, the adult pattern of the distribution of AMPA receptor subunits emerged gradually in most of the other auditory nuclei. Thus, progressive as well as regressive events characterized AMPA receptor development in some nuclei, while a monotonically maturation was seen in other regions. In contrast, the staining patterns of NMDA receptor subunits remained stable or only decreased during the same period. Although our data are not consistent with a generalized pattern of AMPA receptor development, the abundance of GluR1 subunits is a distinctive feature of early AMPA receptors. As similar AMPA receptors are present during plasticity periods throughout the brain, neurons undergoing synaptic and structural remodelling might have a particular need for these receptors.  相似文献   

8.
Glutamatergic neurotransmission in the neostriatum and the globus pallidus is mediated through NMDA-type as well as other glutamate receptors and is critical in the expression of basal ganglia function. In order to characterize the cellular, subcellular and subsynaptic localization of NMDA receptors in the neostriatum and globus pallidus, multiple immunocytochemical techniques were applied using antibodies that recognize the NR1 subunit of the NMDA receptor. In order to determine the spatial relationship between NMDA receptors and AMPA receptors, double labelling was performed with the NR1 antibodies and an antibody that recognizes the GluR2 and 3 subunits of the AMPA receptor. In the neostriatum all neurons with characteristics of spiny projection neurons, some interneurons and many dendrites and spines were immunoreactive for NR1. In the globus pallidus most perikarya and many dendritic processes were immunopositive. Immunogold methods revealed that most NR1 labelling is associated with asymmetrical synapses and, like the labelling for GluR2/3, is evenly spread across the synapse. Double immunolabelling revealed that in neostriatum, over 80% of NR1-positive axospinous synapses are also positive for GluR2/3. In the globus pallidus most NR1-positive synapses are positive for GluR2/3. In both regions many synapses labelled only for GluR2/3 were also detected. These results, together with previous data, suggest that NMDA and AMPA receptor subunits are expressed by the same neurons in the neostriatum and globus pallidus and that NMDA and AMPA receptors are, at least in part, colocalized at individual asymmetrical synapses. The synaptic responses to glutamate in these regions are thus likely be mediated by both AMPA and NMDA receptors at the level of individual synapses.  相似文献   

9.
The principal excitatory neurotransmitter in the vertebrate central nervous system, L-glutamate, acts on three classes of ionotripic glutamate receptors, named after the agonists AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxalole-4-propionic acid), NMDA (N-methyl-D-aspartate) and kainate. The development of selective pharmacological agents has led to a detailed understanding of the physiological and pathological roles of AMPA and NMDA receptors. In contrast, the lack of selective kainate receptor ligands has greatly hindered progress in understanding the roles of kainate receptors. Here we describe the effects of a potent and selective agonist, ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid) and a selective antagonist, LY294486 ((3SR, 4aRS, 6SR, 8aRS)-6-((((1H-tetrazol-5-yl) methyl)oxy)methyl)-1, 2, 3, 4, 4a, 5, 6, 7, 8, 8a-decahydroisoquinoline-3-carboxylic acid), of the GluR5 subtype of kainate receptor. We have used these agents to show that kainate receptors, comprised of or containing GluR5 subunits, regulate synaptic inhibition in the hippocampus, an action that could contribute to the epileptogenic effects of kainate.  相似文献   

10.
Glutamate, the neurotransmitter at most excitatory synapses in the brain, activates a variety of receptor subtypes that can broadly be divided into ionotropic (ligand-gated ion channels) and metabotropic (G-protein-coupled) receptors. Ionotropic receptors mediate fast excitatory synaptic transmission, and based on pharmacological and molecular biological studies are divided into NMDA and non-NMDA subtypes. The non-NMDA receptor group is further divided into AMPA and kainate subtypes. Virtually all fast excitatory postsynaptic currents studied so far in the central nervous system are mediated by the AMPA and NMDA subtypes of receptors. Surprisingly, despite extensive analysis of their structure, biophysical properties and anatomical distribution, a synaptic role for kainate receptors in the brain has not been found. Here we report that repetitive activation of the hippocampal mossy fibre pathway, which is associated with high-affinity kainate binding and many of the kainate receptor subtypes, generates a slow excitatory synaptic current with all of the properties expected of a kainate receptor. This activity-dependent synaptic current greatly augments the excitatory drive of CA3 pyramidal cells.  相似文献   

11.
Pregnenolone sulfate (PS) is an abundant neurosteroid that can potentiate or inhibit ligand gated ion channel activity and thereby alter neuronal excitability. Whereas PS is known to inhibit kainate and AMPA responses while potentiating NMDA responses, the dependence of modulation on receptor subunit composition remains to be determined. Toward this end, the effect of PS on recombinant kainate (GluR6), AMPA (GluR1 or GluR3), and NMDA (NR1(100)+NR2A) receptors was characterized electrophysiologically with respect to efficacy and potency of modulation. With Xenopus oocytes expressing GluR1, GluR3 or GluR6 receptors, PS reduces the efficacy of kainate without affecting its potency, indicative of a noncompetitive mechanism of action. Conversely, with oocytes expressing NR1(100)+NR2A subunits, PS enhances the efficacy of NMDA without affecting its potency. Whereas the modulatory efficacy, but not the potency, of PS is increased two-fold by co-injection of NR1(100)+NR2A cRNAs as compared with NR1(100) cRNA alone, there is little or no effect of the NR2A subunit on efficacy or potency of pregnanolone (or epipregnanolone) sulfate as an inhibitor of the NMDA response. This suggests that the NR2A subunit controls the efficacy of neurosteroid enhancement, but not inhibition, which is consistent with our previous finding that potentiating and inhibitory steroids act at distinct sites on the NMDA receptor. This represents a first step towards understanding the role of subunit composition in determining neurosteroid modulation of ionotropic glutamate receptor function.  相似文献   

12.
The cause of the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) remains unexplained. One potential pathogenetic mechanism is chronic toxicity due to disturbances of the glutamatergic neurotransmitter system, mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive glutamate receptors. Functional AMPA receptors consist of various combinations of four subunits (designated GluR1-4). The GluR2 subunit is functionally dominant and renders AMPA receptors impermeable to calcium. Most native AMPA receptors in the mammalian central nervous system (CNS) contain the GluR2 subunit and are calcium impermeable. We have investigated the composition of AMPA receptors expressed on normal human spinal motor neurons by in situ hybridization to determine their likely subunit stoichiometry. Highly significant levels of mRNA were detected for the GluR1, GluR3, and GluR4 subunits. However, GluR2 subunit mRNA was not detectable in this cell group. The absence of detectable GluR2 mRNA in normal human spinal motor neurons predicts that they express calcium-permeable AMPA receptors unlike most neuronal groups in the human CNS. Expression of atypical calcium-permeable AMPA receptors by human motor neurons provides a possible mechanism whereby disturbances of glutamate neurotransmission in ALS may selectively injure this cell group.  相似文献   

13.
The cone 'synaptic complex' is a unique structure in which a single presynaptic axon secretes glutamate onto processes of bipolar cells (both ON and OFF) and horizontal cells. In turn, the horizontal cell processes antagonize cone and bipolar responses to glutamate (probably by GABA). What still remains largely unknown is the molecular identity of the postsynaptic receptors and their exact locations. We identified several subunits of the glutamate receptor and the GABAA receptor expressed at the cone synaptic complex and localized them ultrastructurally. Glutamate receptors: (i) Invaginating (probably ON) bipolar dendrites in the monkey and rat express the metabotropic glutamate receptor, mGluR6. The stain is intense on the dendritic membrane where it first enters the invagination, and weak at the tip nearest to the ribbon. The cone membrane is electron-dense where it apposes the intense stain for mGluR6. Surprisingly, invaginating bipolar dendrites in the cat also express the AMPA receptor subunits, GluR2/3 and GluR4. (ii) Dendrites forming basal contacts in the cat (probably OFF) express the AMPA subunits GluR2/3, GluR4, and also the kainate subunit, GluR6/7. The stain is especially intense at the dendritic tips in apposition to electron-dense regions of cone membrane. (iii) Horizontal cells in the cat express the AMPA subunits GluR2/3, GluR4 and the kainate subunit, GluR6/7. The stain is strongest in the cytosol of somas and primary dendrites, but is also present in the invaginating terminals where it localizes to the membrane subjacent to the ribbon. GABAA receptors: (i) ON and OFF bipolar dendrites in the monkey express the alpha 1 and beta 2/3 subunits. The stain is localized to the bipolar cell membrane in apposition to horizontal cell processes. (ii) Cones did not express the GABAA subunits tested by immunocytochemistry, but beta 3 mRNA was amplified by RT-PCR from rat photoreceptors. Conclusions: (i) mGluR6 receptors concentrate on dendrites at the base of the invagination rather than at the apex. This implies that receptors at both 'invaginating' and 'basal' contacts lie roughly equidistant from the release sites and should therefore receive similar spatiotemporal concentrations of glutamate. (ii) The 'cone' membrane is electron-dense opposite to the receptor sites on both ON and OFF bipolar cells. This suggests a special role for this region in synaptic transmission. Possibly, these densities signify a transporter that would regulate glutamate concentration at sites remote (> 200 nm) from the locus of vesicle release.  相似文献   

14.
Characterization of the role of kainate receptors in excitatory synaptic transmission has been hampered by a lack of subtype-selective pharmacological agents. (S)-5-Iodowillardiine (IW), an analog of willardiine [(S)-1-(2-amino-2-carboxyethyl)pyrimidine-2,4-dione], a heterocyclic amino acid found in Acacia and Mimosa seeds, was previously shown to be highly potent on native kainate receptors in dorsal root ganglion neurons. We examined the responses evoked by IW from recombinant homomeric and heteromeric kainate receptors expressed in human embryonic kidney 293 cells. IW potently elicited currents from glutamate receptor 5 (GluR5)-expressing cells, but showed no activity on homomeric GluR6 or GluR7 receptors. Co-expression of these receptor subunits with KA-2 subunits produced receptors that were weakly sensitive to IW. GluR5/KA-2 receptors had a higher EC50 value than homomeric GluR5 and exhibited a much faster recovery from desensitization. Finally, we found that the IW selectivity for GluR5 compared with GluR6 was determined by amino acid 721, which was previously shown to control alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate sensitivity of these kainate receptor subunits. The pharmacological selectivity and commercial availability of IW suggests that this compound may be of use in characterizing the molecular constituents of native kainate receptor responses.  相似文献   

15.
Transient, severe forebrain or global ischemia leads to delayed cell death of pyramidal neurons in the hippocampal CA1. The precise molecular mechanisms underlying neuronal cell death after global ischemia are as yet unknown. Glutamate receptor-mediated Ca2+ influx is thought to play a critical role in this cell death. In situ hybridization revealed that the expression of mRNA encoding GluR2 (the subunit that limits Ca2+ permeability of AMPA-type glutamate receptors) was markedly and specifically reduced in gerbil CA1 pyramidal neurons after global ischemia but before the onset of neurodegeneration. To determine whether the change in GluR2 expression is functionally significant, we examined the AMPA receptor-mediated rise in cytoplasmic free Ca2+ level ([Ca2+]i) in individual CA1 pyramidal neurons by optical imaging with the Ca2+ indicator dye fura-2 and by intracellular recording. Seventy-two hours after ischemia, CA1 neurons that retained the ability to fire action potentials exhibited a greatly enhanced AMPA-elicited rise in [Ca2+]i. Basal [Ca2+]i in these neurons was unchanged. These findings provide evidence for Ca2+ entry directly through AMPA receptors in pyramidal neurons destined to die. Downregulation of GluR2 gene expression and an increase in Ca2+ influx through AMPA receptors in response to endogenous glutamate are likely to contribute to the delayed neuronal death after global ischemia.  相似文献   

16.
Kainate receptors expressing the GluR5 subunit of glutamate receptor are present at high levels on small diameter primary afferent neurones that are considered to mediate nociceptive inputs. This suggests that GluR5 selective ligands could be novel analgesic agents. The role of kainate receptors on C fibre primary afferents has therefore been probed using three compounds that are selective for homomeric GluR5 receptors. The agonist, ATPA, and the antagonists, LY294486 and LY382884, have been tested in four models of nociception: responses evoked by noxious stimulation of the periphery have been recorded electrophysiologically (1) from hemisected spinal cords from neonatal rats in vitro, (2) from single motor units in adult rats in vivo, (3) from dorsal horn neurones in adult rats in vivo, and (4) in hotplate tests with conscious mice. In some protocols comparisons were made with the AMPA selective antagonist GYKI 53655. The agonist ATPA reduced nociceptive reflexes in vitro, but failed to have effects in vivo. In all tests, the GluR5 antagonists reduced nociceptive responses but only at doses that also affected responses to exogenous AMPA. The AMPA antagonist reduced nociceptive responses at doses causing relatively greater reductions of responses to exogenous AMPA. The results indicate that GluR5 selective ligands do reduce spinal nociceptive responses, but they are not strongly analgesic under these conditions of acute nociception.  相似文献   

17.
18.
The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N-methyl-D-aspartate (NMDA) receptors, (2) toxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-im ine (MK-801), an NMDA receptor antagonist, was able to block part of the toxicity. The activation of NMDA receptors is most likely a secondary effect resulting from glutamate release upon kainate or domoate stimulation. 1-(4-Aminophenyl)-3-methylcarbamyl-4-methyl-3,4-dihydro-7,8-ethyle nedioxy-5H-2,3-benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate- and domoate-mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization of kainate receptors led to an increased neurotoxicity upon stimulation with kainate or domoate. In neurons cultured for 12 days in vitro a small but significant neurotoxic effect was observed when stimulated with agonist in the presence of MK-801 and GYKI 53655. This indicates that the toxicity is produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures.  相似文献   

19.
GluR5 and GluR6 kainate receptors differ in their responses to a variety of agonists, despite their relatively high primary sequence homology. We carried out a structure-function study to identify amino acids underlying these divergent responses. Patch clamp analysis of chimeric GluR5-GluR6 receptors indicated that several functionally dominant sites were localized to the C-terminal side of M1. All nonconserved amino acids in the region between M3 and M4 of GluR6 were then individually mutated to their GluR5 counterparts. We found that a single amino acid (N721 in GluR6) controls both AMPA sensitivity and domoate deactivation rates. Additionally, mutation of A689 in GluR6 slowed kainate desensitization. These functional effects were accompanied by alterations in binding affinities. These results support a critical role for these residues in receptor binding and gating activity.  相似文献   

20.
Native kainate receptors expressed by cultured hippocampal cells were studied in the whole-cell configuration of the patch-clamp technique by using a fast perfusion system. About 80% of the neurons expressed kainate receptors independently of the time in culture (0-4 days), which coincided with the number of cells immunoreactive for a monoclonal antibody against the GluR5/6/7 subunits. Three types of cells were considered: neurons in which the rapid application of kainate induced a rapidly desensitizing current, cells in which kainate induced a more slowly rising, non-desensitizing, response and those in which a mixture of both responses was apparent. Steady responses induced by 300 microM kainate were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in a dose-dependent manner (IC50 = 0.92 microM). CNQX was less potent in blocking transient kainate-induced responses (IC50 = 6.1 microM). Responses to kainate, whether steady or transient, were also inhibited by NS102, showing poor selectivity for the transient response (IC50 = 4.1 and 2.2 microM respectively). The new alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptor antagonist NS394 was very potent in inhibiting steady kainate-induced currents (IC50 = 0.45 microM), but was even more effective in preventing peak responses (IC50 = 0.13 microM). In contrast, cyclothiazide did not affect transient kainate-induced responses but did potentiate current induced by activation of AMPA receptors by AMPA or kainate. These results demonstrate the lack of complete selectivity amongst some available competitive antagonists for AMPA and kainate receptors, and indicate that kainate receptors expressed by hippocampal cells lack the cyclothiazide modulatory site present at AMPA receptors. In addition, the present data support the idea that low-affinity kainate binding sites in the brain correspond to receptor channels selectively activated by kainate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号