首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Block copolymers of polycarbonate (PC) and polymethylmethacrylate (PMMA), PCb‐PMMA, were examined as compatibilizers for blends of PC with styrene‐co‐acrylonitrile (SAN) copolymer. PC‐b‐PMMA was added to blends of PC with SAN containing various amounts of AN. The average diameter of the dispersed particles was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fiber retraction (IFR) test and an asymmetric double cantilever beam fracture test. The average particle size and interfacial tension of the PC/SAN blends reached a minimum value when the SAN copolymer contained about 24 wt% AN. A maximum in the adhesion energy was also observed at the same AN content. Interfacial tension and particle size were further reduced by adding PC‐b‐PMMA to the PC/SAN blends. Fracture toughness of the blends was also improved by enhancing the interfacial adhesion by the addition of PC‐b‐PMMA. The addition of PC‐b‐PMMA copolymer was more effective at improving the interfacial properties of PC/SAN blends than was varying the AN content of the SAN copolymers. The interfacial properties of the PC/SAN blends were optimized by adding a block copolymer and using an SAN copolymer that had minimum interaction energy with PC.  相似文献   

2.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Block copolymers of polycarbonate‐b‐poly(methyl methacrylate) (PC‐b‐PMMA) and tetramethyl poly(carbonate)‐b‐poly(methyl methacrylate) (TMPC‐b‐PMMA) were examined as compatibilizers for blends of polycarbonate (PC) with styrene‐co‐acrylonitrile (SAN) copolymer. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fiber retraction (IFR) technique and an asymmetric double cantilever beam fracture test. The average diameter of dispersed particles and interfacial tension of the PC/SAN blends were reduced by adding compatibilizer to the PC/SAN blends. Fracture toughness of the blends was also improved by enhancing interfacial adhesion with compatibilizer. TMPC‐b‐PMMA copolymer was more effective than PC‐b‐PMMA copolymer as a compatibilizer for the PC/SAN blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2649–2656, 2003  相似文献   

5.
This study examines the interfacial adhesion between poly(styrene) (PS) and poly(styrene‐co‐acrylonitrile) (SAN) interfaces reinforced with poly(styrene‐co‐vinyl phenol) (PS‐ran‐PSPh) random copolymers using an asymmetric double‐cantilever beam (ADCB) test. The effects of oligomer and copolymer composition on interfacial adhesion were investigated. The results showed that the interfacial adhesion of the PS/SAN interface was increased significantly after removing the residual oligomer from the SAN. The interfacial adhesion was also measured for five‐purified SAN materials in the range 17–31 wt%. The highest level of PS/SAN adhesion was observed for 17% AN (acrylonitrile) materials. In addition, the interfacial adhesion of a mixture of diblock and random copolymer was measured in order to investigate which is the most effective method. The results showed that mixture systems are more cost‐effective with higher adhesion, which is independent of temperature. Atomic force microscopy showed that a single craze ahead of the crack is a possible failure mode during PS/SAN interface fracture. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
In this work, the compatibility of poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymers with their polyhedral oligomeric silsesquioxane (POSS) copolymers combined by solution blending is investigated, to determine the effect of incorporation of the POSS unit on polymer compatibility. The morphology of these tethered POSS copolymer/polymer blends was studied by electron microscopy, thermal analysis, and density. Although the basic PS/PMMA blend was clearly immiscible, it was also found that the incorporation of POSS into the PS chain led to incompatibility when the POSScoPS copolymer was blended with PS homopolymer. However, conversely, in the case where the POSS moiety was included as part of a copolymer with PMMA, the copolymer was miscible with the PMMA homopolymer. The presence of isobutyl units on the corners of POSS cage is clearly sufficient to encourage miscibility with PMMA. Interestingly, blends of the two different POSS copolymers led to an immiscible structure, despite having the common POSS units, the interactions between the POSS moieties clearly not being sufficient to drive compatibility. The POSS copolymers have also been used as interfacial agents in immiscible PS and PMMA blend, and it has been found that the appearance of the interface bonding is improved, although the phase morphology is only slightly changed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
制备不同配比的丙烯腈-丁二烯-苯乙烯(ABS)/苯乙烯-丙烯腈(SAN)/中粘度聚甲基丙烯酸甲酯(PMMA)合金,分别测试其缺口冲击强度、拉伸强度、热变形温度、熔体流动指数等,结果表明:ABS/SAN可以引发中粘度PMMA产生大量的银纹,从而大幅度提高共混物的冲击强度;引入中粘度PMMA可以提高ABS/SAN的耐热性能;添加中粘度PMMA,合金的流动性能呈现下降的趋势。  相似文献   

8.
The effect of copolymer mixtures on the interfacial adhesion between slabs of PS and PMMA was investigated as a function of composition, time and temperature using the asymmetric double cantilever beam (ADCB) method. The nature of the interface was further probed using atomic force microscopy (AFM) and dynamic secondary ion mass spectroscopy (D-SIMS). The results show that mixtures of graft and block copolymers are much more effective than pure block copolymers in enhancing the interfacial adhesion. The most effective mixture consisted of a block copolymer of molecular weight 70K and a copolymer with two PS grafts of molecular weight 30K. This mixture yielded an interfacial fracture toughness of Gc = 127.5 J/m2 as compared with Gc = 38.2 J/m2 and Gc = 3.5 J/m2 for the pure block and graft copolymer, respectively.

Gc at the PS/PMMA interface reinforced only with block copolymer was maximal after an annealing temperature of 150°C for 1 hr. It decreased by an order of magnitude when the temperature was increased to 180°C or the joining time was increased from 1 to 10 hours. Gc at the interface reinforced with a graft/diblock copolymer mixture was also maximum at an annealing temperature of 150°C but it decreased only by a factor of 2 with increasing joining time or temperature. Dynamic Secondary Ion Mass Spectroscopy (DSIMS) data show that this effect may be due to decrease in the diffusion of the copolymer from the interface when the mixture is present, i.e, the diblock copolymer is trapped within the graft copolymer.  相似文献   

9.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

10.
Acrylonitrile‐styrene‐butyl acrylate (ASA) graft copolymers with different acrylonitrile (AN) contents, the core‐shell ratio, and tert‐dodecyl mercaptan (TDDM) amounts were synthesized by seed emulsion polymerization. Polyvinylchloride (PVC)/ASA blends were prepared by melt blending ASA graft copolymers with PVC resin. Then the toughness, dynamic mechanical property, and morphology of the PVC/ASA blends were investigated. The results indicated that the impact strength of the PVC/ASA blends increased and then decreased with the increase of the AN content in poly(styrene‐co‐acrylonitrile (SAN) copolymer, and increased with the increase of the core‐shell ratio of ASA. It was shown that brittle‐ductile transition of PVC/ASA blends was dependent on poly(butyl acrylate) (PBA) rubber content in blends and independent of AN content in SAN copolymer. The introduction of TDDM made the toughness of PVC/ASA blends poor. Dynamic mechanical analysis (DMA) curves exhibited that PVC and SAN copolymers were immiscible over the entire AN composition range. From scanning electron microscopy (SEM), it was found that the dispersion of ASA in PVC/ASA blends was dependent on the AN content in SAN copolymer and TDDM amounts. J. VINYL ADDIT. TECHNOL., 22:43–50, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
The mechanical properties and morphology of melt mixed polystyrene (PS)/polyethylene (PE) blends that were modified by the addition of up to 16% of a semicrystalline PS-b-hPB (hydrogenated polybutadiene) diblock copolymer with varying molecular weight are reported. As a result of the blocks of the copolymer penetrating the corresponding homopolymers, these diblock copolymers are capable of reinforcing the PS/PE interface significantly. This increase in interfacial strength between the immiscible blend components does not necessarily result in an improvement in the mechanical properties of the blends as measured by Izod or tensile tests. This may be because the effect of the copolymers on the rheological properties of the blends during processing outweighs their emulsifying/reinforcing effects. If found to be universally true for polymer blends, these results suggest that the relationship between the effects of copolymers on interfacial strength, their emulsifying effects, and the mechanical properties of copolymer modified blends are not as simple as suggested by many statements found in the literature.  相似文献   

12.
The effect of copolymer mixtures on the interfacial adhesion between slabs of PS and PMMA was investigated as a function of composition, time and temperature using the asymmetric double cantilever beam (ADCB) method. The nature of the interface was further probed using atomic force microscopy (AFM) and dynamic secondary ion mass spectroscopy (D-SIMS). The results show that mixtures of graft and block copolymers are much more effective than pure block copolymers in enhancing the interfacial adhesion. The most effective mixture consisted of a block copolymer of molecular weight 70K and a copolymer with two PS grafts of molecular weight 30K. This mixture yielded an interfacial fracture toughness of Gc = 127.5 J/m2 as compared with Gc = 38.2 J/m2 and Gc = 3.5 J/m2 for the pure block and graft copolymer, respectively.

Gc at the PS/PMMA interface reinforced only with block copolymer was maximal after an annealing temperature of 150°C for 1 hr. It decreased by an order of magnitude when the temperature was increased to 180°C or the joining time was increased from 1 to 10 hours. Gc at the interface reinforced with a graft/diblock copolymer mixture was also maximum at an annealing temperature of 150°C but it decreased only by a factor of 2 with increasing joining time or temperature. Dynamic Secondary Ion Mass Spectroscopy (DSIMS) data show that this effect may be due to decrease in the diffusion of the copolymer from the interface when the mixture is present, i.e, the diblock copolymer is trapped within the graft copolymer.  相似文献   

13.
王硕  刘哲  盛光  吕洁  郭阳  李刚 《弹性体》2010,20(1):46-52
采用种子乳液聚合技术在聚丁二烯(PB)乳胶粒子上接枝共聚苯乙烯(St)、α-甲基苯乙烯(α—MSt)和丙烯腈(AN)单体,合成了一系列不同AN结合量的ABS和α—MABS接枝共聚物。将其与聚氯乙烯(PVC)树脂熔融共混制得了PVC/AtkS共混物,利用扫描电镜(SEM)、透射电镜(TEM)和动态力学分析仪(DMA)对共混物的相容性和相结构进行了表征。结果发现,在PVC/ABS共混体系中,尽管改变接枝SAN共聚物的AN结合量,PVC和ABS接枝共聚物均为不相容体系;在ABS接枝共聚物中引入α-MSt后,当接枝SAN共聚物的AN结合量为18.7%~23.6%(质量分数)时,共混物在室温以上只存在1个tanδ峰,共混物成为相容体系,当AN结合量达到32.1%(质量分数)时,共混物成为部分相容体系。共混物的相区尺寸明显地依赖于接枝SAN共聚物中的AN结合量,与动态力学性能结果表现出良好的吻合。  相似文献   

14.
Blends of polystyrene (PS) and poly(dimethylsiloxane) (PDMS), with and without diblock copolymers (PS‐b‐PDMS), were prepared by melt mixing. The melt rheology behavior of the blends was studied with a capillary rheometer. The morphology of the blends was examined with scanning electron microscopy. The miscibility of the blends was studied with differential scanning calorimetry. The morphology of PS/PDMS blends was modified by the addition of PS‐b‐PDMS copolymers and investigated as a function of the molar mass of the diblock copolymers, viscosity ratios and the processing conditions. As investigated, the observed morphology of the melt‐blended PS/PDMS pair unambiguously supported the interfacial activity of the diblock copolymers. When a few percent of the diblock copolymers blended together with the PS and PDMS homopolymers, the phase size was reduced and the phase dispersion was firmly stabilized against coalescence. The compatibilizing efficiency of the copolymers was strongly dependent on its molar mass. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2747–2757, 2004  相似文献   

15.
The effects of reactive reinforced interface on the morphology and tensile properties of amorphous polyamide (a-PA) and styrene-acrylonitrile (SAN) copolymer blend have been investigated using styrene maleic anhydride (SMA) copolymer as a reactive compatibilizer. The anhydride groups of SMA copolymer can react with the amine groups of polyamide and form in situ graft copolymers at the a-PA–SAN interfaces during the blend preparation. The interfacial adhesion strength of the reactive reinforced interface was evaluated quantitatively using an asymmetric double cantilever beam fracture test as a function of SMA copolymer content using a model adhesive joint. The interfacial adhesion strength was found to increase with the content of SMA copolymer and then level off. The morphological observations of a-PA–SAN (80/20 w/w) blends showed that the finer dispersion of the SAN domains with rather narrow distribution was obtained by the addition of SMA copolymer into the blends. The trend of morphology change was not in accord with that of the interfacial adhesion strength with respect to the content of SMA copolymer. However, the results of tensile properties showed very similar behavior to the case of the interfacial adhesion strength with respect to SMA content; that is, there was an optimum level of the reactive compatibilizer beyond which the interfacial adhesion strength and tensile strength did not change significantly. These results clearly reveal that tensile properties of polymer blend are highly dependent on the interfacial adhesion strength. Furthermore, it is suggested that the asymmetric double cantilever beam fracture test using a model interface is a useful method to quantify the adhesion strength between the phases in real polymer blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1925–1933, 1998  相似文献   

16.
A series of α-methylstyrene, styrene, and acrylonitrile (α-MSAN) copolymers with different acrylonitrile (AN) contents were synthesized by altering α-MSt, St, and AN ratios with emulsion copolymerization method. By melt-blending these copolymers with PVC resin and di-isooctyl phthalate (DOP), PVC/α-MSAN, and PVC/α-MSAN/DOP blends were prepared. The miscibility and morphology of the blends were investigated by dynamic mechanical analysis (DMA) and scanning electron microscopy. The PVC is immiscible with SAN by melt-mixing, whereas PVC is miscible with α-MSAN (α-MSt/St = 1/1) if AN weight percent is within the window range of 20–25 wt %, and α-MSAN (not containing St) with 35 wt % AN is miscible with PVC even when they are blended by melt-mixing. Replacement of styrene with α-methylstyrene widens the miscibility window with PVC. The miscibility of PVC/α-MSAN blends is substantially improved with the increasing α-MSt content in α-MSAN copolymer containing identical AN content. When DOP was introduced into the PVC/α-MSAN (α-MSt/St = 1/1) blends, a single tan δ peak over room temperature in DMA detection is found as AN content in α-MSAN copolymer is within the range of 15–25 wt %, and SEM observation also shows that the blends are homogeneous. When the AN content in α-MSAN copolymer is over 35 wt %, the presence of DOP causes the phase domain extended. The phase domain size of the PVC/α-MSAN/DOP blends intensively depends on AN content in α-MSAN copolymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Styrene‐acrylonitrile random copolymer (SAN) and polyarylate (PAr) block copolymer were applied as a reactive compatibilizer for polyamide‐6 (PA‐6)/acrylonitrile‐butadiene‐styrene (ABS) copolymer blends. The SAN–PAr block copolymer was found to be effective for compatibilization of PA‐6/ABS blends. With the addition of 3.0–5.0 wt % SAN–PAr block copolymer, the ABS‐rich phase could be reduced to a smaller size than 1.0 μm in the 70/30 and 50/50 PA‐6/ABS blends, although it was several microns in the uncompatibilized blends. As a result, for the blends compatibilized with 3–5 wt % block copolymer the impact energy absorption reached the super toughness region in the 70/30 and 50/50 PA‐6/ABS compositions. The compatibilization mechanism of PA‐6/ABS by the SAN–PAr block copolymer was investigated by tetrahydrofuran extraction of the SAN–PAr block copolymer/PA‐6 blends and the model reactions between the block copolymer and low molecular weight compounds. The results of these experiments indicated that the SAN–PAr block copolymer reacted with the PA‐6 during the melt mixing process via an in situ transreaction between the ester units in the PAr chain and the terminal amine in the PA‐6. As a result, SAN–PAr/PA‐6 block copolymers were generated during the melt mixing process. The SAN–PAr block copolymer was supposed to compatibilize the PA‐6 and ABS blend by anchoring the PAr/PA‐6 and SAN chains to the PA‐6 and ABS phases, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2300–2313, 2002  相似文献   

18.
A series of imidized acrylic polymers of varying structural composition generated by reaction of methylamine with poly(methyl methacrylate) were blended with a range of styrene/acrylonitrile or SAN copolymers (0–33% AN) and with poly(vinyl chloride). On the basis of glass transition behavior determined by differential scanning calorimetry, some but not all imidized acrylic structures were found to be miscible with PVC and with SAN copolymers within a limited window of AN levels. Acid functionality in the imidized acrylics appears to hinder their miscibility with SAN rather significantly and with PVC to a lesser extent. Miscible SAN blends showed lower critical solution temperature behavior whereas miscible blends with PVC did not up to the highest attainable temperatures. The composition factors that influence the phase behavior are described and interpreted in terms of possible mechanisms.  相似文献   

19.
Y. KimJ.E. Yoo  C.K. Kim 《Polymer》2003,44(18):5439-5447
The phase behavior of dimethyl polycarbonate-tetramethyl polycarbonate (DMPC-TMPC) blends with poly(styrene-co-acrylonitrile) copolymers (SAN) and the interaction energies of binary pairs involved in blend has been explored. DMPC-TMPC copolycarbonates containing 60 wt% TMPC or more were formed miscible blends with SAN containing limited amounts of AN. The miscibility of copolycarbonate with SAN decreases as the DMPC content increases. The miscible blends showed the LCST-type phase behavior or did not phase separate until thermal degradation. The binary interaction energies involved in the miscible blends were calculated from the phase boundaries using the lattice-fluid theory combined with binary interaction model. The phenyl ring substitution with methyl groups did not lead to interactions that are favorable for miscibility with polyacrylonitrile (PAN). The interaction energies of the polycarbonates blends with SAN copolymers as a function of AN content were obtained. It was revealed that the incline of the number of methyl groups on the phenyl rings of bisphenol-A unit acts favorably for the miscibility with SAN copolymer when SAN contains less than about 30 wt% AN and shifts the most favorable interaction to the low AN content.  相似文献   

20.
BACKGROUND: The phase behaviour of copolymers and their blends is of great interest due to the phase transitions, self‐assembly and formation of ordered structures. Phenomena associated with the microdomain morphology of parent copolymers and phase behaviour in blends of deuterated block copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA), i.e. (dPS‐blockdPMMA)1/(dPS‐block‐PMMA)2, were investigated using small‐angle X‐ray scattering, small‐angle neutron scattering and transmission electron microscopy as a function of molecular weight, concentration of added copolymers and temperature. RESULTS: Binary blends of the diblock copolymers having different molecular weights and different original micromorphology (one copolymer was in a disordered state and the others were of lamellar phase) were prepared by a solution‐cast process. The blends were found to be completely miscible on the molecular level at all compositions, if their molecular weight ratio was smaller than about 5. The domain spacing D of the blends can be scaled with Mn by DMn2/3 as predicted by a previously published postulate (originally suggested and proved for blends of lamellar polystyrene‐block‐polyisoprene copolymers). CONCLUSIONS: The criterion for forming a single‐domain morphology (molecularly mixed blend) taking into account the different solubilization of copolymer blocks has been applied to explain the changes in microdomain morphology during the self‐assembling process in two copolymer blends. Evidently the criterion, suggested originally for blends of lamellar polystyrene‐block‐polyisoprene copolymers, can be employed to a much broader range of block copolymer blends. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号