首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
针对垃圾渗滤液高COD、高氨氮的特征,选用了混凝沉淀、Fenton氧化、蒸发及其组合工艺对垃圾渗滤液进行预处理,通过单因素试验,探讨了各工艺的最佳运行条件。试验结果表明,采用混凝沉淀法时,PAFC最佳投加量为30 mg/L,PAM最佳投加量为4 mg/L;采用Fenton氧化法时,H2O2最佳投加量为1.5‰,H2O2∶Fe2+最佳质量比为10∶3;垃圾渗滤液的最佳预处理工艺为混凝沉淀+Fenton氧化+蒸发,此时COD,NH4-N+的去除率分别为91.22%,86.73%,为后续生化处理提供了良好的反应条件。  相似文献   

2.
采用K2FeO4预氧化复合高岭土和聚合氯化铝(PAC)混凝处理含藻和腐殖酸的混合水.结果表明,当藻浓度不变时,在一定范围内,随着腐殖酸浓度的升高,浊度、腐殖酸及藻去除率均逐渐下降.当腐殖酸浓度固定时,随着藻液浓度的升高,腐殖酸和藻去除率逐渐上升,而浊度去除率基本不变.同时考察了矿物高岭土投加量及目数、K2FeO4预氧化时间、不同污染物浓度比例对K2FeO4预氧化处理混合水效果的影响,当高岭土投加量为8 mg/L、粒径为140目时,浊度和腐殖酸、藻类的去除率分别为91.0%,80.9%和88.2%,投加量过大或目数过大,沉降性能变差,起不到良好的助凝作用.  相似文献   

3.
以铜绿微囊藻和三氯酚(TCP)为研究对象,探究了紫外/过硫酸盐(UV/PS)预氧化强化混凝技术同步除藻和TCP的效果。结果表明,经过UV/PS预氧化强化混凝沉淀以后,对OD680、Chl-a、浊度和TCP的去除率分别提高了66.2%、67.4%、51.7%和95.6%;UV/PS预氧化阶段最佳PS投加量为100 mg/L,最佳预氧化时间为10 min。机理分析发现,UV/PS预氧化可以破坏细胞的完整性,使藻细胞释放胞内有机物(IOM),并且能够进一步破坏核酸;同时,UV/PS预氧化还可以降低藻细胞表面的Zeta电位、改变细胞粒径,进而强化混凝除藻。  相似文献   

4.
为掌握原水硬度对除藻效果的影响,以绿藻为研究对象,在原水钙硬度为50~300mg/L的环境下进行了臭氧和高锰酸钾的混凝除藻实验。混凝实验结果显示,不同的钙离子浓度均能显著提高臭氧和高锰酸钾的混凝除藻效果。当钙离子浓度较低时,臭氧预氧化—混凝除藻效果优于高锰酸钾预氧化—混凝;但当钙硬度> 90 mg/L时,高锰酸钾预氧化—混凝除藻效果则优于臭氧预氧化—混凝。水厂原水的3组平行实验数据也证明在高硬度环境下高锰酸钾预氧化—混凝除藻效果优于臭氧预氧化—混凝。  相似文献   

5.
为了应对蓝藻水华,研究了高铁酸钾预氧化对混凝除藻效能的影响。结果表明,高铁酸钾预氧化能显著提高混凝工艺对藻细胞和溶解性有机物的去除效果。在4 mg/L的最佳高铁酸钾投量下,对藻细胞、浊度、总有机物、溶解性有机物的去除率分别为73. 0%、65. 6%、58. 5%、17. 4%,与单独混凝相比,分别提高了19. 0%、16. 9%、11. 4%、5. 6%。此外,高铁酸钾预氧化对含藻水中具有紫外特性和荧光特性的有机物均有一定的去除效果。机理研究表明,高铁酸钾预氧化使藻细胞失活,Zeta电位升高,且其分解产物纳米铁氧化物吸附在藻细胞表面,增加了藻细胞的密度,从而提高了混凝除藻效能。  相似文献   

6.
通过设计正交试验,分析了次氯酸钠氧化和混凝法对水库原水和氨氮超标水在低温低浊期的处理效果。结果表明,次氯酸钠氧化法的去除效果优于混凝法。对水库原水,当p H值为7时,两种方法的最佳条件分别为氧化10 min、20 mg/L次氯酸钠和絮凝15 min、10 mg/L PAC、1.5mg/L PAM,CODMn平均去除率分别为65%和28%、UV254为15%和43%。对氨氮超标水,当p H值为7时,两种方法的最佳条件分别为氧化15 min、20 mg/L次氯酸钠和絮凝20 min、20 mg/L PAC、1.5 mg/L PAM,氨氮平均去除率分别为61%和19%、CODMn为35%和27%、UV254为5%和22%。  相似文献   

7.
开展了ClO2预氧化与PDM复合药剂联用提高常规处理工艺除藻效果的试验研究。结果表明,对于藻类数为1.3×108个/L、浊度为10.32~15.50 NTU、温度为27~30℃的黄河下游引黄水库水,当ClO2投量为1.0 mg/L、PDM复合药剂投量为60 mg/L时,滤后水浊度能降至0.2NTU以下,对CODMn的去除率达到46.6%,对藻类的去除率高达99%以上。ClO2预氧化与PDM复合药剂联用技术是强化常规工艺处理高藻水库水的有效措施。  相似文献   

8.
开展了CIO2预氧化与PDM复合药剂联用提高常规处理工艺除藻效果的试验研究.结果表明,对于藻类数为1.3 X 108个/L、浊度为10.32~15.50 NTU、温度为27~30℃的黄河下游引黄水库水,当CIO2投量为1.0 mg/L、PDM复合药剂投量为60 mg/L时,滤后水浊度能降至0.2NTU以下,对CODMn的去除率达到46.6%,对藻类的去除率高达99%以上.CIO2预氧化与PDM复合药剂联用技术是强化常规工艺处理高藻水库水的有效措施.  相似文献   

9.
饮用水源突发镉污染的应急处理技术研究   总被引:2,自引:0,他引:2  
为应对可能出现的突发性镉污染事件,采用连续流试验考察了常规混凝沉淀工艺、KMnO4预氧化/混凝沉淀工艺、粉末炭(PAC)吸附/混凝沉淀工艺、KMnO4和PAC联用/混凝沉淀工艺以及高锰酸盐复合药剂(PPC)预氧化/混凝沉淀工艺对镉的去除效果。结果表明,常规混凝沉淀工艺的除镉效果有限,聚合氯化铝投量为4 mg/L时,对Cd2+的去除率仅为10.5%;KMnO4预氧化/混凝沉淀工艺、PAC吸附/混凝沉淀工艺、KMnO4和PAC联用/混凝沉淀工艺对Cd2+的去除率均有提高,但出水水质仍不能满足国家饮用水水质标准。PPC预氧化/混凝沉淀工艺的除镉效果明显,当PPC投量为3.5 mg/L时,沉后水中剩余Cd2+浓度降低至3.3μg/L,达到了国家饮用水水质标准,去除率为95.2%。因此,PPC预氧化可以作为东江沿岸水厂应对镉污染的一种有效的应急处理措施。  相似文献   

10.
藻类是水源水的微污染物,其大量生长将给水厂制水和饮水安全带来诸多影响。试验对比了次氯酸钠氧化除藻,硫酸铝、聚合氯化铝(PAC)混凝沉淀除藻以及氧化和混凝联合除藻的效果,并对次氯酸钠、硫酸铝、聚合氯化铝的投加量以及处理时间进行了优化,确定了经济合理的除藻方案。结果表明,当次氯酸钠投加量为30 mg/L、接触氧化时间为20 min时,除藻率为95.4%;当硫酸铝投加量为140 mg/L时,除藻率为87.3%;当聚合氯化铝投加量为120 mg/L时,除藻率为87.1%;在25 mg/L次氯酸钠+120 mg/L硫酸铝条件下,除藻率为98.3%,沉后水浊度为0.411 NTU;在25 mg/L次氯酸钠+110 mg/L聚合氯化铝条件下,除藻率为98.0%,沉后水浊度为0.379 NTU。次氯酸钠的助凝作用大大强化了混凝沉淀效果,从而使沉后水浊度降低,既有效提高了除藻率,又减轻了水厂后续工艺的负荷。  相似文献   

11.
过氧化氢预氧化技术试验研究   总被引:10,自引:0,他引:10  
通过生产试验证明,过氧化氢预氧化对水中有机污染物和氨氮都具有相当高的去除率。预氧化采用固体催化剂(包括炭锰催化剂,人工锰砂)的方案是可行的,处理后出水过氧化氢含量大大低于国外饮用水标准,可用于饮用水处理,采用二氧化锰催化剂不会增加铁锰,而且能够去除铁锰。  相似文献   

12.
Alex Christensen 《Water research》2009,43(16):3910-4166
The objective of this study was to evaluate the extent of improvement in the biodegradability of persistent organic compounds by pre-oxidation by using Sequential Batch Reactors (SBRs). Dichlorodiethyl ether (DCDE), a non-biodegradable compound, was used as a test chemical. Ozonation, Fenton reagent and ultra-violet light coupled with hydrogen peroxide (UV/H2O2) were used for oxidation of DCDE at levels of 50-100%. Pre-oxidized DCDE solutions were then subjected to SBR studies using activated sludge to determine the rate and extent of biodegradation of oxidation by-products. The results indicated that the biodegradability of pre-oxidized DCDE increased drastically, reaching an average of 90% for all three oxidation methods versus zero for non-oxidized DCDE. It was concluded that the results of SBR experiments may be better indicators of biodegradability of chemically-oxidized wastewaters due to significant acclimation of microorganisms in SBRs, which cannot be observed in conventional respirometric laboratory studies.  相似文献   

13.
Pre-oxidation is often applied to reduce the formation of disinfection by-products (DBPs). The aim of pre-oxidation is to remove the centers of natural organic matter (NOM) which are responsible for the formation of DBPs. In this paper, the differences between ozone- and OH-radical-induced oxidation to remove DBP-precursors are compared. The experiments were done with water of the River Ruhr (Germany) with a concentration of dissolved organic carbon (DOC) of 2 mg/l. Ozonation was able to remove DBP precursors selectively. After application of an absorbed ozone mass of 1.5 mg/mg DOC, a reduction in the formation potential for (THM-FP) and in the formation potential for organic halogen adsorbable on activated carbon (AOX-FP) down to 68 and 73% of the initial concentration was achieved, respectively. A removal of NOM was not achieved using absorbed ozone masses between 0.5 and 1.5 mg/mg DOC. In the hydrogen peroxide/UV process, in which OH-radicals are the reactive species, an increase in the THM concentration was measured after application of this process with short irradiation times. The maximum value of the THM-FP was 20% higher than the initial THM-FP. After an irradiation time of 1,050 min and a hydrogen peroxide consumption of 5.6 mg/l, the THM-FP and AOX-FP decreased to 75 and 71% of the initial formation potential, respectively. There was no selective removal of DBP precursors because the DOC concentration decreased also to 75% of the initial DOC-concentration after 1,050 min of irradiation.  相似文献   

14.
Hörsch P  Speck A  Frimmel FH 《Water research》2003,37(11):2748-2756
Three different industrial wastewaters from the production of stilbene-based fluorescent whitening agents were investigated with regard to the applicability of advanced oxidation processes combined with biodegradation. Oxidation processes included the application of ozone, hydrogen peroxide, UV-radiation and Fenton's reagent (Fe(2+)/H(2)O(2)). Characterization of the combined chemical-biological treatment was done by sum parameters and HPLC analysis. In addition, toxicity was determined using the luminescence inhibition test. Results showed that processes producing OH-radicals without the need of UV-irradiation proved to be suited for the oxidation of all three wastewaters. H(2)O(2)/UV processes were ineffective due to the high inner filter effect of the effluents. Comparing the combined oxidative-biological process with biological treatment, the applied pre-oxidation steps did not always lead to a significant improvement of the biological degradation. In one case, an inverted treatment starting with biodegradation followed by oxidation turned out to be the preferable procedure. After oxidation with ozone or ozone combined with UV-irradiation, an increase in toxicity was partly observed indicating the formation of toxic intermediate products. In some cases samples had to be diluted before the biodegradation step to achieve a better biodegradability.  相似文献   

15.
A hydrogen peroxide biosensor was used to monitor hydrogen peroxide concentrations in a UV/hydrogen peroxide immobilised Fenton advanced oxidation process (AOP). The biosensor is based on gas phase monitoring and thus is more resistant to fouling from the liquid phase constituents of industrial processes. The biosensor is supplied with catalase continually, therefore overcoming any problems with enzyme degradation, which would occur in an immobilised enzyme biosensor. The biosensors response was linear within the experimental range 30-400mg H(2)O(2)l(-1) with a R(2) correlation of 0.99. The hydrogen peroxide monitor was used to monitor residual peroxide in an AOP, operated with a step overload of hydrogen peroxide, with correlation factors of 0.96-0.99 compared to offline hydrogen peroxide determinations by UV spectroscopy. Sparging the sample with nitrogen was found to be effective in reducing the interference from dissolved gases produced with the AOP itself. It is proposed that this biosensor could be used to improve the effectiveness of AOPs via hydrogen peroxide control.  相似文献   

16.
Two different re-oxygenation techniques (aeration and hydrogen peroxide addition) were compared in respirometric experiments. As similar results were obtained in both cases, it was concluded that the addition of hydrogen peroxide does not modify the oxygen uptake rate of the biomass, under either endogenous or feeding conditions. It was hypothesized that under those experimental conditions (inhibition of nitrification with ATU), hydrogen peroxide alters neither the biomass metabolism nor the biodegradability of the tested substrates. The oxygen uptake rates obtained with the aeration system were often more scattered due to the adhesion of fine bubbles after the switch off of the aeration. Moreover, the transfer rate of oxygen to the solution is faster in the case of hydrogen peroxide addition.  相似文献   

17.
Fenton法处理垃圾渗滤液   总被引:51,自引:5,他引:51  
介绍了Fenton法处理垃圾渗滤液的中型试验,其中Fenton氧化在连续搅拌反应器(CSTR)中进行。试验表明,当双氧水与亚铁盐的总投加比一定(H2O2/Fe^2 =3.0)时,COD的去除率随双氧水投加量的增加而增加,但与双氧水在两个氧化槽的投加比例无关。当双氧水的总投加量为0.1mol/L时,COD的去除率可达67.5%,这一结果同样适用于其他垃圾填埋场的晚期渗滤液处理。  相似文献   

18.
Zhu W  Yang Z  Wang L 《Water research》2001,35(8):2087-2091
A pretreatment method for the biological treatment of wastewater from 4,4'-diaminostilbene-2,2'-disulfonic acid (DSD-acid) manufacturing processes, a refractory dye intermediate wastewater, based on combined ferrous hydrogen peroxide oxidation and coagulation-flocculation, was developed. When the wastewater was treated with ferrous hydrogen peroxide oxidation ([Fe2+] = 2.7 mmol/L, [H2O2] = 0.21 mol/L) after a flocculation using an organic flocculant TS-1 at a dosage of 3 g/L, the overall COD and color removals were 64 and 62%, respectively. BOD5/COD value of the effluent was 0.3. Ferrous hydrogen peroxide oxidation treatment can reduce the solubility of organic molecules with sulfonic group and increase the efficiency of coagulation treatment. The COD and color removals were both more than 90% when FeCl3 was used as the coagulation (dosages of two-step coagulation were 0.031 and 0.012 mol/L respectively) after a ferrous hydrogen peroxide oxidation pretreatment at a H2O2 dosage of 0.06 mol/L.  相似文献   

19.
Neamţu M  Frimmel FH 《Water research》2006,40(20):3745-3750
The photodegradation of bisphenol A (BPA) in pure water, surface water and wastewater effluents was studied. The effect of different hydrogen peroxide concentrations on degradation was investigated. The rate of BPA photolysis in the presence of hydrogen peroxide was lower in wastewater effluent than in purified water.

Phenol, 1,4-dihydroxylbenzene and 1,4-benzoquinone were identified by means of HPLC as intermediate products of the photodegradation of bisphenol A.

In addition, the disappearance of the estrogenic activity of bisphenol A during irradiation was shown by the YES test. Based upon the YES test results, there was a strong decrease of estrogenic activity of parent compound after 120 min irradiation in the presence of hydrogen peroxide.  相似文献   


20.
过氧化氢爆炸事故浅析   总被引:6,自引:1,他引:5  
通过两起过氧化氢(双氧水)爆炸事故,分析了过氧化氢由于本身具有较大的潜能,很不稳定,当受热、泄漏、撞击、摩擦时,易分解放热产生高温,造成火灾爆炸事故,对火灾爆炸反应过程与爆炸机理进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号