首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Surface plasmon resonance (SPR) imaging is a surface-sensitive spectroscopic technique for measuring interactions between unlabeled biological molecules with arrays of surface-bound species. In this paper, SPR imaging is used to quantitatively detect the hybridization adsorption of short (18-base) unlabeled DNA oligonucleotides at low concentration, as well as, for the first time, the hybridization adsorption of unlabeled RNA oligonucleotides and larger 16S ribosomal RNA (rRNA) isolated from the microbe Escherichia coli onto a DNA array. For the hybridization adsorption of both DNA and RNA oligonucleotides, a detection limit of 10 nM is reported; for large (1,500-base) 16S rRNA molecules, concentrations as low as 2 nM are detected. The covalent attachment of thiol-DNA probes to the gold surface leads to high surface probe density (10(12) molecules/cm2) and excellent probe stability that enables more than 25 cycles of hybridization and denaturing without loss in signal or specificity. Fresnel calculations are used to show that changes in percent reflectivity as measured by SPR imaging are linear with respect to surface coverage of adsorbed DNA oligonucleotides. Data from SPR imaging is used to construct a quantitative adsorption isotherm of the hybridization adsorption on a surface. DNA and RNA 18-mer oligonucleotide hybridization adsorption is found to follow a Langmuir isotherm with an adsorption coefficient of 1.8 x 10(7) M(-1).  相似文献   

2.
Using a fluorescence-based method, we have determined the number of thiol-derivatized single-stranded oligonucleotides bound to gold nanoparticles and their extent of hybridization with complementary oligonucleotides in solution. Oligonucleotide surface coverages of hexanethiol 12-mer oligonucleotides on gold nanoparticles (34 +/- 1 pmol/cm2) were significantly higher than on planar gold thin films (18 +/- 3 pmol/cm2), while the percentage of hybridizable strands on the gold nanoparticles (1.3 +/- 0.3 pmol/cm2, 4%) was lower than for gold thin films (6 +/- 2 pmol/cm2, 33%). A gradual increase in electrolyte concentration over the course of oligonucleotide deposition significantly increases surface coverage and consequently particle stability. In addition, oligonucleotide spacer sequences improve the hybridization efficiency of oligonucleotide-modified nanoparticles from approximately 4 to 44%. The surface coverage of recognition strands can be tailored using coadsorbed diluent oligonucleotides. This provides a means of indirectly controlling the average number of hybridized strands per nanoparticle. The work presented here has important implications with regard to understanding interactions between modified oligonucleotides and metal nanoparticles, as well as optimizing the sensitivity of gold nanoparticle-based oligonucleotide detection methods.  相似文献   

3.
4.
Recently, nanobiosensors using nanoparticles, such as gold, silver, and quantum dots, have been studied extensively. Among them, fluorescence resonance energy transfer (FRET)-based DNA sensor is prominent device, especially for the medical diagnosis and biomolecular investigations. FRET is a phenomenon of the emitted energy transfer from one fluorescent dye to another dye through a convoluted wavelength for the excitation. PDMS-based microfluidic chips with pillar structure were prepared for the detection of exon 7 of p53 gene by using QD-DNA probe attached to polystyrene micro beads. The specific hybridization was investigated with 4 different target oligonucleotides. Fluorescence quenching was observed only from the target oligonucleotide for exon 7 with proper sequence for the hybridization. The fluorescence intensity from QDs decreased rapidly due to hybridization and FRET between QDs and intercalating dyes.  相似文献   

5.
6.
Li H  Rothberg L 《Analytical chemistry》2005,77(19):6229-6233
We have used the disparity in adsorption rates for single- and double-stranded RNA on ionically coated gold nanoparticles suspended in a colloid to design a rapid sequence identification assay. Unlabeled target RNA and a probe sequence are mixed prior to exposure to the gold nanoparticles to enable efficient hybridization. We have designed assays based on either color changes or fluorescence that are sensitive to a few picomoles of target. Single-base mutations on RNA sequences can be detected even in complex oligonucleotide mixtures. The assay requires less than 10 min so that RNA degradation problems are avoided.  相似文献   

7.
Xie H  Zhang C  Gao Z 《Analytical chemistry》2004,76(6):1611-1617
Cationic redox polymers containing osmium-bipyridine complexes strongly interact with anionic enzymes, such as glucose oxidase and peroxidases, and electrochemically "activate" the enzymes. On the basis of these observations, attempts were made to develop an ultrasensitive nucleic acid biosensor. A mixed monolayer of single-stranded oligonucleotide capture probe and 16-mercaptohexadecanoic acid was formed on a gold electrode through self-assembly. Following hybridization with a complementary nucleic acid and glucose oxidase labeled oligonucleotide detection probe, a cationic redox polymer (electrochemical activator) overcoating was applied to the electrode through layer-by-layer electrostatic self-assembly. The formation of an anionic-cationic bilayer brought the glucose oxidase in electrical contact with the redox polymer, making the bilayer an electrocatalyst for the oxidation of glucose. Thus, nucleic acid molecules were quantified amperometrically at femtomolar levels. The effect of experimental variables on the amperometric response was investigated and optimized to maximize the sensitivity and speed up the assay time. A detection limit of 1.0 fmol/L in 1.0-microL droplets and a linear current-concentration relationship up to 800 fmol/L were attained following a 30-min hybridization. The biosensor was applied to the detection of the 16S gene in a mixture of Escherichia coli 16S + 32S rRNA and a full-length rat housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), of a RT-PCR product.  相似文献   

8.
An allele-specific oligonucleotide microarray was developed for rapid typing of pathogens based on analysis of genomic variations. Using a panel of Escherichia coli strains as a model system, selected loci were sequenced to uncover differences, such as single- or multiple-nucleotide polymorphisms as well as insertion/deletions (indels). While typical genomic profiling experiments employ specific sequences targeted to genomic DNA unique to a single strain or virulent gene, the present array is designed to type bacteria based on a patterned signature response across multiple loci. In the signature concept, all strains are interrogated by hybridizing their amplified DNA to an array containing multiple probe sequences. Allele-specific oligonucleotide probe sequences targeting each of these variable regions were synthesized and included in a custom fiber-optic array. For each locus, a set of specific probe sequences is selected, such that hybridization gives a binary signal/no signal response to each of the probes. Using this strategy for multiple loci, many pathogens or microorganisms could be classified using a limited number of probes. Because of the advantages of the fiber-optic array platform over other array formats, including sensitivity and speed, the platform described in this paper is capable of supporting a high-throughput diagnostic strategy.  相似文献   

9.
We focused on changes in the electrical property of the open bridge-structured gold nanoparticles array consisting of 46-nm parent and 12-nm son gold nanoparticles by hybridization and applied it for a simple electrical DNA detection. Since a target DNA of a 24-mer oligonucleotide was added to the probe DNA modified 12-nm Au nanoparticles, which was arranged on the gap between the 46-nm Au particles, the response was read by an electrical readout system. Even in a simple measuring method, we obtained a rapid response to the cDNA with a high S/N ratio of 30 over a wide concentration range and a detection limit of 5.0 fmol. Moreover, the array discriminated 1-base mismatches, regardless of their location in the DNA sequence, which enabled us to detect single-nucleotide polymorphism, which is one of the important diagnoses, without any polymerase chain reaction amplification, sophisticated instrumentation, or fluorescent labeling through an easy-to-handle electrical readout system.  相似文献   

10.
Magnetic and gold-coated magnetic nanoparticles as a DNA sensor   总被引:1,自引:0,他引:1  
In this study, we report the chemical synthesis and functionalization of magnetic and gold-coated magnetic nanoparticles and the immobilization of single-stranded biotinylated oligonucleotides onto these particles. Selected sequences specific to the BRCA1 gene were used as a test platform. The binding of oligonucleotides to these particles was achieved through a streptavidin-biotin bridge via a carbodiimide activation protocol. Particle size and oligonucleotide attachment were confirmed by transmission electron microscopy; oligonucleotide binding was characterized by Fourier transform infrared spectroscopy and hybridization confirmed by fluorescence emission from the fluorophore attached to the target oligonucleotide strand. The rate of hybridization was measured using a spectrofluorometer and a microarray scanner. The rate of hybridization of oligonucleotides bound to the synthesized particles depends on the inorganic support material and its surface chemistry. The rate of hybridization increased concomitantly with the concentration of the probe and the target in the reaction medium. Furthermore, exposure of probe and target oligonucleotide to a combination of target and noncomplementary DNA strand reduced the rate of hybridization, possibly because of steric crowding in the reaction medium and cross-linking between reacting oligonucleotides and the noncomplementary strands. The study undertaken opens several possibilities in bioconjugate attachment to functionalized iron and iron nanocomposite structures for controlled manipulation and handling using magnetic fields.  相似文献   

11.
The principal objective of this paper was to present the design and fabrication of a single-strand (ss) DNA biosensor for the detection of Escherichia coli (E. coli) DNA synthetic oligonucleotides as a model of rapid detection of bacterial select bioterrorism agents. Molecular biology and chemical electrodeposition techniques, such as cyclic voltammetry (CV), were combined to develop and test a model DNA-based biosensor on a platinum (Pt) electrode electropolimerized with polypyrrole (PPY). The hybridization on embedded DNA into PPY with complementary DNA samples was determined. The recognition element was a 25 base pair (bp) oligonucleotide specific for E. coli derived from the uidA gene that codes for the enzyme /spl beta/-D glucuronidase. CV scans between 0.0 and +0.70 V at a 50-mV/s scanning rate generated current versus potential graphs. A standard DNA concentration of 1 /spl mu/g//spl mu/L was used to determine the hybridization signal of the biosensor. The model biosensor generated distinctive CV signals between complementary and noncomplementary DNA oligonucleotides. The biosensor proved to be effective in the detection of complementary uidA 25-bp oligonucleotide for E. coli K-12.  相似文献   

12.
A new electrochemical method to determine underivatized oligonucleotides is developed. The electro-oxidation of the adenine moieties of adsorbed oligonucleotides at elevated potentials on pyrolytic graphite electrodes (PGE) in neutral or alkaline media gives rise to electroactive products strongly adsorbed on the electrode surface. The extent of the redox processes of these products, with formal potential close to 0 V (vs Ag /AgCl) at pH 10, correlates well with the amount of parent oligonucleotide. Various electrochemical techniques have been compared and applied to the detection of specific DNA sequences and synthetic homopolynucleotides. Detection limits of 2 and 10 ng for (dA)20 and a 21-mer sequence of HIV-1, respectively, have been achieved using sample volumes of 10 microL. Moreover, the adsorbed oxidized oligonucleotide shows electrocatalytic activity toward the oxidation of NADH. The capability of the new method to detect DNA hybridization is discussed.  相似文献   

13.
14.
Kim J  Crooks RM 《Analytical chemistry》2007,79(23):8994-8999
A new method for fabrication of RNA microarrays is described. The approach involves cohybridization of a short, biotinylated DNA oligonucleotide and an RNA probe sequence to DNA templates spotted onto a master array. Next, the short DNA sequence and the RNA probe are linked using a T4 DNA ligase. Finally, a poly(dimethylsiloxane) (PDMS) monolith modified on the surface with streptavidin is brought into conformal contact with the master array. This results in binding of the biotinylated DNA/RNA oligonucleotides to the PDMS surface. When the two substrates are mechanically separated, the DNA/RNA oligonucleotides transfer to the PDMS replica, and the DNA oligonucleotides remaining on the master array are ready to template another RNA replica array. This sequence can be repeated for at least 18 cycles using a single master array. RNA arrays consisting of up to three different oligonucleotide sequences and consisting of up to 2500 individual approximately 70 microm spots have been prepared.  相似文献   

15.
Wang J  Xu D  Kawde AN  Polsky R 《Analytical chemistry》2001,73(22):5576-5581
A new nanoparticle-based electrical detection of DNA hybridization, based on electrochemical stripping detection of the colloidal gold tag, is described. In this protocol, the hybridization of a target oligonucleotide to magnetic bead-linked oligonucleotide probes is followed by binding of the streptavidin-coated metal nanoparticles to the captured DNA, dissolution of the nanometer-sized gold tag, and potentiometric stripping measurements of the dissolved metal tag at single-use thick-film carbon electrodes. An advanced magnetic processing technique is used to isolate the DNA duplex and to provide low-volume mixing. The influence of relevant experimental variables, including the amounts of the gold nanoparticles and the magnetic beads, the duration of the hybridization and gold dissolution steps, and the parameters of the potentiometric stripping operation upon the hybridization signal, is examined and optimized. Transmission electron microscopy micrographs indicate that the hybridization event leads to the bridging of the gold nanoparticles to the magnetic beads. Further signal amplification, and lowering of the detection limits to the nanomolar and picomolar domains, are achieved by precipitating gold or silver, respectively, onto the colloidal gold label. The new electrochemical stripping metallogenomagnetic protocol couples the inherent signal amplification of stripping metal analysis with discrimination against nonhybridized DNA, the use of microliter sample volumes, and disposable transducers and, hence, offers great promise for decentralized genetic testing.  相似文献   

16.
Liu CH  Li ZP  Du BA  Duan XR  Wang YC 《Analytical chemistry》2006,78(11):3738-3744
A new nanoparticle-based chemiluminescent (CL) method has been developed for the ultrasensitive detection of DNA hybridization. The assay relies on a sandwich-type DNA hybridization in which the DNA targets are first hybridized to the captured oligonucleotide probes immobilized on polystyrene microwells and then the silver nanoparticles modified with alkylthiol-capped oligonucleotides are used as probes to monitor the presence of the specific target DNA. After being anchored on the hybrids, silver nanoparticles are dissolved to Ag+ in HNO3 solution and sensitively determined by a coupling CL reaction system (Ag+-Mn2+-K2S2O8-H3PO4-luminol). The combination of the remarkable sensitivity of the CL method with the large number of Ag+ released from each hybrid allows the detection of specific sequence DNA targets at levels as low as 5 fM. The sensitivity increases 6 orders of magnitude greater than that of the gold nanoparticle-based colorimetric method and is comparable to that of surface-enhanced Raman spectroscopy, which is one of the most sensitive detection approaches available to the nanoparticle-based detection for DNA hybridization. Moreover, the perfectly complementary DNA targets and the single-base mismatched DNA strands can be evidently differentiated through controlling the temperature, which indicates that the proposed CL assay offers great promise for single-nucleotide polymorphism analysis.  相似文献   

17.
A quantitative universal biosensor was developed on the basis of olignucleotide sandwich hybridization for the rapid (30 min total assay time) and highly sensitive (1 nM) detection of specific nucleic acid sequences. The biosensor consists of a universal membrane and a universal dye-entrapping liposomal nanovesicle. Two oligonucleotides, a reporter and a capture probe that can hybridize specifically with the target nucleic acid sequence, can be coupled to the universal biosensor components within a 10-min incubation period, thus converting it into a specific assay. The liposomal nanovesicles bear a generic oligonucleotide sequence on their outer surface. The reporter probes consist of two parts: the 3' end is complementary to the generic liposomal oligonucleotide, and the 5' end is complementary to the target sequence. Streptavidin is immobilized in the detection zone of the universal membranes. The capture probes are biotinylated at the 5' end and are complementary to another segment in the target sequence. Thus, by incubating the liposomal nanovesicles with the reporter probes, the target sequence, and the capture probes in a hybridization buffer for 20 min, a sandwich complex is formed. The mixture is applied to the membrane, migrates along the strip, and is captured in the detection zone via streptavidin-biotin binding. The biosensor assay was optimized with respect to hybridization conditions, concentrations of all components, and length of the generic probe. It was tested using synthetic DNA sequences and authentic RNA sequences isolated and amplified using nucleic acid sequence-based amplification (NASBA) from Escherichia coli, Bacillus anthracis, and Cryptosporidium parvum. Dose-response curves were carried out using a portable reflectometer for the instantaneous quantification of liposomal nanovesicles in the detection zone. Limits of detection of 1 fmol per assay (1 nM) and dynamic ranges between 1 fmol and at least 750 fmol (1-750 nM) were obtained. The universal biosensors were compared to specific RNA biosensors developed earlier and were found to match or exceed their performance characteristics. In addition, no changes to hybridization conditions were required when switching to the detection of a new target sequence or when using actual nucleic acid sequence-based amplified RNA sequences. Therefore, the universal biosensor described is an excellent tool for use in laboratories or at test sites for rapidly investigating and quantifying any nucleic acid sequence of interest.  相似文献   

18.
Enzyme-amplified amperometric sandwich test for RNA and DNA.   总被引:3,自引:0,他引:3  
A one-step enzyme-amplified amperometric sandwich hybridization test for RNA and DNA is described. The test utilizes a carbon electrode, modified with a film of co-electrodeposited avidin and redox polymer; the redox polymer electrically "wiring" horseradish peroxidase (HRP) reaction centers upon contact. The film is made specific for the particular RNA or DNA sequence tested by conjugating its avidin with a biotinylated oligonucleotide, complementary to the assayed sequence. This oligonucleotide-modified redox polymer film, prepared prior to the test, forms the base of the sandwich. The center layer of the sandwich, added in the test, is the analyte RNA or DNA; its top is a second complemetary oligonucleotide, which is HRP-labeled, and is cohybridized in the test. The test consists of mixing the analyte DNA or RNA solution, the HRP-labeled oligonucleotide solution, and a hydrogen peroxide solution, immersing the base-layer carrying electrode applying a potential of 0 V versus Ag/AgCl, and measuring the H2O2 electroreduction current. Completion of the sandwich brings the HRP label into electrical contact with the redox polymer, converting the nonelectrocatalytic base layer into an electrocatalyst for the electroreduction of H2O2 to water. Flow of H2O2 electroreduction current when the electrode is poised near Ag/AgCl potential indicates the presence of the analyte RNA or DNA. The current density for the maximally sandwich-covered electrode was 250 microA cm(-2), exceeding more than a 100-fold the current density flowing upon nonspecific binding of the HRP-labeled oligonucleotide. High concentrations of irrelevant DNA and diluted serum did not interfere with the assay. When the electrodes were rotated in order to make the solution-phase mass transport rapid, the test was completed in approximately 30 min. The test was applied in probing for the presence of a 60-base E. coli mRNA sequence.  相似文献   

19.
A novel electrochemical genesensor using twice hybridization enhancement of gold nanoparticles based on carbon paste modified electrode is described. The carbon nanotube modified carbon paste electrode (CNTPE) and mesoporous molecular sieve SBA-15 modified carbon paste electrode (MSCPE) were investigated. The assay relies on the immobilization of streptavidin-biotin labeled target oligonucleotides onto the electrode surface and its hybridization to the gold nanoparticle-labeled DNA probe. After twice hybridization enhanced connection of gold nanoparticles to the hybridized system, the differential pulse voltammetry (DPV) signal of total gold nanoparticles was monitored. It was found that the adsorption of oligonucleotide and hybridized DPV signal on CNTPE were both enhanced in comparison with that of pure carbon paste electrode (CPE). But this trend was reverse on MSCPE. The DPV detection of twice hybridized gold nanoparticles indicated that the sensitivity of the genesensor enhanced about one order of magnitude compared with one-layer hybridization. One-base mismatched DNA and complementary DNA could be distinguished clearly. However, no distinct advantage of MSCPE over CPE was found.  相似文献   

20.
Microfluidic channels fabricated from poly(dimethylsiloxane) (PDMS) are employed in surface plasmon resonance imaging experiments for the detection of DNA and RNA adsorption onto chemically modified gold surfaces. The PDMS microchannels are used to (i) fabricate "1-D" single-stranded DNA (ssDNA) line arrays that are used in SPR imaging experiments of oligonucleotide hybridization adsorption and (ii) create "2-D" DNA hybridization arrays in which a second set of PDMS microchannels are placed perpendicular to a 1-D line array in order to deliver target oligonucleotide solutions. In the 1-D line array experiments, the total sample volume is 500 microL; in the 2-D DNA array experiments, this volume is reduced to 1 microL. As a demonstration of the utility of these microfluidic arrays, a 2-D DNA array is used to detect a 20-fmol sample of in vitro transcribed RNA from the uidA gene of a transgenic Arabidopsis thaliana plant. It is also shown that this array fabrication method can be used for fluorescence measurements on chemically modified gold surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号