首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
正确认识煤层气井开采过程中的渗透性变化特征是实现煤层气科学高效开发的重要前提.目前,大量的室内实验研究渗透率随排采的变化时仅考虑压力敏感性,而没有考虑在实际生产过程中存在的基质收缩效应的影响.笔者提出一种动态分析方法,利用实际生产数据,分段拟合出不同生产时间下的煤层参数,包括渗透率和地层压力等,并且在前人研究的基础上建立了考虑应力敏感效应和基质收缩效应的渗透率数学模型,通过数据回归获得到模型的具体参数.该方法可以用于描述煤层渗透率的动态特征,预测煤层气产量变化,指导现场配产.  相似文献   

2.
固流耦合作用下煤层气解吸-渗流实验研究   总被引:10,自引:0,他引:10  
以典型的高瓦斯矿井阜新孙家湾矿为研究对象,利用自主研制的自压式三轴渗透仪,对煤层气解吸和渗流间的相互作用规律进行了实验研究.实验过程中连续进行加载和卸载(改变轴压、围压和孔隙压)并考虑了固流耦合作用影响,模拟了三维应力下煤层气运移过程.实验结果表明,加载条件下,渗透率和渗透系数与孔隙压力、解吸量、解吸时间的关系具有相似性.在此过程中,渗透率和渗透系数随孔隙压增加均呈非线性递减关系,都具有负指数规律,而解吸量和解吸时间均呈多项式形式增加,且渗透率和渗透系数存在某一临界值,当小于此值时渗透率和渗透系数随瓦斯孔隙压力增大而减小.卸栽条件下,有效水平应力与渗透率和渗透系数呈抛物线关系(先减小后增大),而有效水平应力与解吸量和解吸时间均为负指数形式递减,具有典型的煤层气开采的三阶段主导作用特征(有效应力主导阶段、基质收缩主导阶段和滑脱效应主导阶段).实验结果真实地反映了煤对瓦斯的吸附和解吸作用;实验结论与前人研究结果吻合较好,说明实验方法和步骤是合理的.  相似文献   

3.
在页岩气藏开采过程中,页岩储层的渗透性随孔隙压力的降低而发生变化。分析有效应力效应、基质收缩效应和克林肯伯格效应对页岩渗透率的影响,在此基础上建立页岩裂缝渗透率动态变化模型,综合研究页岩储层裂缝渗透率的动态变化规律。研究结果表明:开采初期,页岩储层压力降低,有效应力的影响显著;开采中期,当页岩储层压力降低到气体临界解吸压力后,页岩吸附气不断解吸,基质收缩效应开始影响裂缝的渗透性;开采后期,在低压环境下克林肯伯格效应成为主导影响因素。  相似文献   

4.
为探究孔隙压力与水分变化引起的煤基质压缩体积变化及其对煤岩渗透率的影响规律,采用液氮吸附实验和压汞实验结合的方法计算煤基质压缩系数,并分析煤岩孔隙结构特征.开展不同含水率条件下孔隙压力升高的煤岩渗流实验,构建考虑水分和孔隙压力综合作用的渗透率模型,体现煤岩孔隙结构和瓦斯渗流的关联性.结果表明:煤基质压缩系数可使煤岩压缩体积变化量化,而且煤岩渗透率与孔隙压力呈指数函数关系.孔隙压力恒定时,渗透率随含水率的增大而减小.对比分析渗透率模型计算的压缩系数与孔隙结构实验计算值,说明孔隙结构对煤岩吸附及渗透特性有控制作用.  相似文献   

5.
为评估深部煤岩的瓦斯抽采特性,探究不同条件下煤岩渗透率演化规律,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,开展不同平均有效应力和不同孔隙压力下温度升高的三轴渗流实验.基于分形理论表征温度引起的煤岩孔裂隙扩展和滑脱因子变化情况,进一步考虑压缩变形及滑脱效应对煤岩渗透率的影响,建立应力与温度综合作用的煤岩分形渗透率模型.结果表明:1)随温度升高煤岩整体具有压缩效应,渗流通道减小,渗透率先急剧下降后趋于平缓.2)在相同温度下煤岩渗透率随平均有效应力的增大逐渐减小,随孔隙压力增大先急剧减小后趋于平缓.煤岩裂隙压缩系数C_f随平均有效应力增大逐渐减小,随孔隙压力增大煤岩裂隙性系数具有相同的变化趋势.3)新建渗透率模型的计算值和实测值基本一致,其理论机理适用性及数据匹配度均优于Lu模型,该模型可以较好表征多因素影响下的煤岩渗透率演化规律.4)孔隙压力较低时,滑脱效应较为明显,且在孔隙压力升高初期考虑滑脱效应的煤岩渗透率曲线比不考虑滑脱效应的渗透率曲线更接近实验测量值.  相似文献   

6.
为研究瓦斯抽采过程中煤层瓦斯流场演化规律,本文基于双重孔隙介质的假设,建立了应力场、渗流场和扩散场多场耦合模型,引入了动态扩散系数,使模拟结果更接近实际情况.结果表明:随着测点与钻孔距离的减小,煤层渗透率先减小后增大;瓦斯扩散系数的衰减系数λ在抽采初期对渗透率空间分布影响不显著,后期随着扩散系数的快速衰减,渗透率空间分布差异变大.当λ≤1×10~(-7)时,渗透率随时间先降低后升高;当λ≥2×10~(-7)时,随时间的增加,渗透率由先降低,再升高,然后再降低的变化趋势转为一直降低.衰减系数越大,裂隙内瓦斯压力衰减越快,基质孔隙压力衰减越慢.采用裂隙压力测得的有效抽采半径随时间增长越来越快,而采用基质孔隙压力测得的有效半径随时间增长逐渐趋于平缓,说明基质孔隙压力是确定钻孔有效抽采半径的合理指标.  相似文献   

7.
煤基质收缩对渗透率影响的实验研究   总被引:14,自引:0,他引:14  
在具有围限压力的情况下进行了煤岩体氦气和甲烷渗透率的平行实验;采用控制有效应力的方法,消除了因流体压力降低和气体解吸引起的渗透率变低问题;同时,利用克林伯格公式,校正了因气体分子沿壁面滑动而影响的渗透率,并定量地推导了煤基质收缩引起的渗透率变化情况。结果表明:渗透率增量随绝对渗透率的增加而增大,随流体压力的减少而呈对数形式减少;煤岩体氦气的绝对渗透率大于甲烷的克氏渗透率,在有效应力不变的情况下,流体压力愈小,滑脱效应愈明显;滑脱效应引起的渗透率增量越大;氦气滑脱效应大于甲烷。  相似文献   

8.
针对中国绝大多数高瓦斯煤层渗透性低以及低渗透煤层强化抽采瓦斯效果不理想的现状,结合超临界CO_2强扩散和溶解增透孔隙介质等独特优点,依据超临界CO_2作用后煤微观孔裂隙的演化特征,得到煤微观孔隙率和渗透率演化方程,根据孔隙率的变化确定损伤变量,考虑体积应力、温度、孔隙压力及超临界CO_2溶解增透作用的影响,建立超临界CO_2作用后煤的热流固耦合力学模型,利用ABAQUS软件提供的场变量子程序,结合PYTHON脚本和子程序二次开发功能,实现低渗透煤层注超临界CO_2增透规律数值模拟。结果显示:超临界CO_2注入后,注气孔周围煤体内体积应力、温度及孔隙压力变化明显,随着距注气孔距离的增加,影响程度逐渐减弱,并趋于稳定;经超临界CO_2作用后,注气孔周围煤体内不断萌生新的孔裂隙,并与原有的孔裂隙相互贯通,随注气时间的延长各级孔裂隙不断向煤体纵深演化发展,煤微观孔隙率较注气前提高了2个数量级;超临界CO_2的致裂增透作用引起煤体不同程度的损伤,距注气孔越近,损伤程度越大,损伤增加越快,注气时间越长,损伤增加的幅度越大;煤微观孔裂隙的有效发育为煤层气的扩散渗流提供了更多的运移通道,使煤体渗透系数较注气前提高了3个数量级。  相似文献   

9.
页岩储层的渗透性是页岩气开发过程中的最为重要的指标之一。在页岩气储层压裂后的排采过程中,储层渗透性会随储层压力、孔隙压力等的降低而发生变化。本文从微观层次上对储层基质微纳孔隙收缩效应、气体滑脱效应对页岩储层渗透性影响的力学机制进行了分析,从宏观层次上分析了储层岩体蠕变、裂缝缝面闭合蠕变、储层衰减应力变化对压裂缝网渗透性影响的力学机制。结果表明:在压裂排采期,基质微纳孔隙页岩吸附气体解吸造成的基质收缩效应和气体滑脱效应会在一定程度上增大压裂储层的渗透率,但基质收缩效应对储层岩体渗透性的影响十分微弱,气体滑脱效应在低压条件下会增加储层岩体的渗透性。由于储层水力改造增加了岩体破碎程度,提高了岩体含水率,水力改造区内储层岩体长期蠕变会极大的压缩缝网空间,降低导流裂缝的渗透性。此外,与储层压力减小有关的裂缝壁面闭合蠕变、地层压实变形会致使水力裂隙开度和渗透性进一步降低。  相似文献   

10.
平顶山矿区二1煤层富含煤层甲烷气体,其资源量估算达302亿m3以上.本文通过对控制煤层气赋存的二1煤层的传层几何形态、地质特征、煤质变化、特别是物性特征的研究,指出本区二1煤层渗透性较好,渗透率随着围限压力增加而降低,且与判及发育程度、构造应力变化有密切关系.而二1煤层中的煤层气含量与煤层理深有着密切关系,随着深度增加而增加.通过综合分析指出了开发潜力较好的区块.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号