首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
用溶胶凝胶法制备了Li Ni1/3Co1/3-x Mn1/3Znx O2(x=0,1/24,2/24,4/24)锂离子电池正极材料。由X射线衍射和扫描电镜对其分析结果表明,Zn掺杂不改变Li Ni1/3Co1/3Mn1/3O2的α-Na Fe O2层状结构,当掺杂量达到4/24时,杂相产生。电化学研究表明,当Zn掺杂量为2/24时,Li Ni1/3Co1/3Mn1/3O2首次放电容量由未掺杂的169.2 m Ah·g-1降低为160.1m Ah·g-1,但循环性能明显提高,30次循环后的容量保持率由未掺杂的89.2%升至97%。并且在20、40、60和80 m A·g-1不同的电流密度下继续循环20次后,当再次恢复到20 m A·g-1的电流密度时,放电容量可恢复到150.3 m Ah·g-1。  相似文献   

2.
Li_2Ni Ti O_4是一种岩盐结构的层状锂电正极材料,该材料能够嵌脱2个Li离子,首次充电比容量大,但不可逆容量也很大。本研究通过掺杂Mo元素,优化电化学性能,提高了可逆比容量。通过柠檬酸溶胶凝胶法,以Li NO_3、Ni(NO_3)_2·6H_2O和钛酸四丁酯为原料,以四水钼酸铵为钼源,合成了Li_2Ni Ti O_4和Li_(2.4)Ni_(0.67)Ti_(0.67)Mo_(0.26)O_4,可逆比容量从85 m Ah/g提高到162 m Ah/g,通过和炭黑复合,优化导电性,可逆比容量进一步提升到210 m Ah/g。  相似文献   

3.
采用高温固相法合成Ni2+、Mn2+共掺杂的LiFe0.95Ni0.02Mn0.03PO4/C正极材料。通过X射线衍射(XRD)、扫描电镜(SEM)、电化学阻抗谱(EIS)和电化学测试技术等研究材料的结构、形貌和电化学性能。结果表明:Ni2+和Mn2+共掺杂后的LiFe0.95Ni0.02Mn0.03PO4/C材料仍然具有LiFePO4/C橄榄石型晶体结构,且掺杂后材料的放电比容量和循环性能都得到显著改善。在0.1C和1C下放电时,未掺杂LiFePO4/C的首次放电比容量仅分别为153和140 mA.h/g,而Ni2+、Mn2+共掺杂的LiFe0.95Ni0.02Mn0.03PO4/C材料首次放电比容量分别为165和145 mA.h/g,且在1C下循环100次后容量保持率仍然为97.6%。  相似文献   

4.
采用具有高效传质和微观混合性能的定-转子反应器制备了Li Fe_(1-x )Mn_(x )PO_4(x=0.0,0.1,0.2,0.3)和Li Fe_(1-x )Ni_(x )PO_4(x=0.00,0.03,0.05,0.07)粉体,分别用作正极材料制成电池后,采用电池测试系统测定了电池的电化学性能随温度的变化规律。结果表明,粉体颗粒呈类球形,尺寸分布均匀,粒径范围为5~10μm,Mn和Ni的掺杂没有改变粉体的晶体结构。以Li Fe_(0.8)Mn_(0.2)PO_4和Li Fe_(0.95)Ni_(0.05)PO_4 2种组成的粉体性能最好,在倍率0.1 C下,所得电池的首次充放电比容量在室温和50℃时,分别为153.2和155.7 m Ah/g,及156.4和160.4 m Ah/g;100次充放电循环后电池的容量保持率分别为95.4%和96.5%,及93.8%和95.0%。借助具有过程强化作用的定-转子反应器制备的Mn和Ni掺杂Li Fe PO_4正极材料的电性能得到显著提高,原因是定-转子反应器一方面可以制备颗粒尺寸均匀的粉体,另一方面又可使掺杂的Mn和Ni在粉体颗粒中均匀分布,两者同时提高了电池中Li~+的扩散速率,进而提高了锂离子电池的电化学性能和高温电性能。  相似文献   

5.
在采用低温共沉淀-水热-煅烧法合成锂离子电池Fe-Ni-Mn体系正极材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的基础上,对合成的材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6进行V2O5的包覆改性研究,以提高材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的首次放电比容量和循环性能。用XRD、SEM、TEM、ICP光谱和恒流充放电测试研究包覆材料的结构和电化学性能。结果表明,V2O5包覆并没有改变材料的晶体结构,只存在于材料的表面,与未包覆的材料相比,V2O5包覆后的材料具有更好的首次放电容量和容量保持率。50周循环后,添加质量分数3%V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的放电比容量可以维持在200.3 mAh/g,大于未添加V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的194.0 mAh/g。CV测试表明,包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应。  相似文献   

6.
在采用低温共沉淀-水热-煅烧法合成锂离子电池Fe-Ni-Mn体系正极材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的基础上,对合成的材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6进行V2O5的包覆改性研究,以提高材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的首次放电比容量和循环性能。用XRD、SEM、TEM、ICP光谱和恒流充放电测试研究包覆材料的结构和电化学性能。结果表明,V2O5包覆并没有改变材料的晶体结构,只存在于材料的表面,与未包覆的材料相比,V2O5包覆后的材料具有更好的首次放电容量和容量保持率。50周循环后,添加质量分数3%V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的放电比容量可以维持在200.3 mAh/g,大于未添加V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的194.0 mAh/g。CV测试表明,包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应。  相似文献   

7.
以乙酸盐为原料,采用喷雾干燥法制备层状α-NaFeO2结构的富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2及掺杂Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2。采用X射线衍射、扫描电镜、半电池充放电和电化学阻抗谱等方法研究材料的物相、结构、形貌及电化学性能。结果表明:Cr掺杂使材料的颗粒变粗,但不改变材料的结构,而使材料的层状特征更为明显;Cr掺杂后材料的电化学性能得到明显改善,电荷转移阻抗Rct从275.0降低到105.0,循环稳定性和倍率性能均有所改善,Li[Li0.2Ni0.15Cr0.1Mn0.55]O2材料1C倍率下的放电比容量为140.0 mA.h/g,循环50次后放电比容量为133.7 mA.h/g,远高于未掺杂Cr材料的比容量,未掺杂Cr材料在1C倍率下放电比容量为107.1mA.h/g,循环50次后放电比容量为102.1 mA.h/g。  相似文献   

8.
采用溶胶-凝胶法合成Li3V2-2/3xMnx(PO4)3(0≤x≤0.12)。采用XRD、SEM、XPS、恒流充放电和电化学阻抗谱(EIS)研究Mn掺杂对Li3V2(PO4)3/C结构和电化学性能的影响。XRD研究表明:掺杂少量的Mn2+不会影响材料的结构,所有样品均具有单一相态的单斜结构(P21/n空间群)。XPS分析表明:在Li3V1.94Mn0.09(PO4)3/C中,V和Mn的化合价分别为+3和+2,原料中的柠檬酸在煅烧过程中分解成C而残留在Li3V1.94Mn0.09(PO4)3/C中。电化学测试表明:掺杂Mn改善了电极材料的循环性能和倍率性能,正极材料Li3V1.94Mn0.09(PO4)3/C表现出最好的循环稳定性和倍率性能。在40mA/g的放电电流密度下,循环100次后,Li3V1.94Mn0.09(PO4)3/C的放电容量从158.8mA·h/g衰减到120.5mA·h/g,容量保持率为75.9%,而未掺杂样品的放电容量从164.2mA·h/g衰减到72.6mA·h/g,容量保持率为44.2%。当放电电流密度增加到1C时,Li3V1.94Mn0.09(PO4)3/C的初始放电容量仍能达到146.4mA·h/g,循环100次后,放电容量保持为107.5mA·h/g。EIS测试表明,掺杂适量的Mn2+减小了电荷转移阻抗,这有利于Li+的脱嵌。  相似文献   

9.
采用溶胶-凝胶法合成锂离子电池正极材料Li1.2(Mn0.54Ni0.16Co0.08)O2,并用Al F3对这种材料进行表面包覆改性。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)等表征材料的结构和形貌。结果表明,合成的Li1.2(Mn0.54Ni0.16Co0.08)O2具有典型的层状α-Na Fe O2结构,AlF3均匀包覆在Li1.2(Mn0.54Ni0.16Co0.08)O2材料表面,包覆层厚度为5~7 nm。电化学测试表明,包覆Al F3后材料的电化学性能得到提高,在1C倍率下,包覆的AlF3材料的首次放电容量为208.2 m A·h/g,50次循环后容量保持率为72.4%,而未包覆AlF3的材料的首次放电容量和容量保持率分别为191.7 m A·h/g和51.6%。  相似文献   

10.
采用溶胶-凝胶法合成锂离子电池正极材料Li1.2(Mn0.54Ni0.16Co0.08)O2,并用Al F3对这种材料进行表面包覆改性。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)等表征材料的结构和形貌。结果表明,合成的Li1.2(Mn0.54Ni0.16Co0.08)O2具有典型的层状α-Na Fe O2结构,AlF3均匀包覆在Li1.2(Mn0.54Ni0.16Co0.08)O2材料表面,包覆层厚度为5~7 nm。电化学测试表明,包覆Al F3后材料的电化学性能得到提高,在1C倍率下,包覆的AlF3材料的首次放电容量为208.2 m A·h/g,50次循环后容量保持率为72.4%,而未包覆AlF3的材料的首次放电容量和容量保持率分别为191.7 m A·h/g和51.6%。  相似文献   

11.
用溶胶-凝胶法制备Ti4+掺杂的Li2FeSiO4/C正极材料。用XRD、HRTEM和电化学方法研究了该材料的结构、形貌和电化学性能。结果表明,掺杂适量的Ti4+不会改变Li2FeSiO4/C的正交晶系结构,可以稳定材料的结构,改善高倍率充放电性能。在室温下,Li2Fe0.97Ti0.03SiO4/C以0.1c倍率放电的首次放电比容量为149.1mA·h/g,20次循环后放电比容量为127.3mA·h/g,且不同倍率下的电化学性能明显优于未掺杂的Li2FeSiO4/C。交流阻抗谱研究表明,适量的Ti4+掺杂,减小了正极材料在充放电过程中的电荷传递电阻,增加了材料的电子电导率,改善了材料的电化学性能。  相似文献   

12.
Zn^2+掺杂对锂离子电池正极材料LiFePO4性能的影响   总被引:3,自引:2,他引:1  
以Zn(NO4)2·6H2O为Zn源,蔗糖为C源,对LiFePO4进行了Fe位掺杂和包覆研究.用XRD、交流阻抗方法和恒流充放电研究了材料的结构和电化学性能.结果表明:包覆掺杂后的材料具有橄榄石型晶体结构.从LiFePO4、LiZn0.01Fe0.09PO4到LiZn0.01Fe0.99PO4/C其电荷转移阻抗逐渐减小,材料的可逆性能逐渐增强.掺杂后的材料初始容量和循环性能都得到明显的改善,在0.1C的倍率下,LiFePO4、LiZn0.01Fe0.99PO4和LiZn0.041Fe0.99PO4/C首次放电容量分别为93.1mAh·g-1、130.4mAh·g-1和159.2 mAh·g-1.放电倍率提高到0.5C时,LiZn0.01Fe0.99PO4/C首次放电容量仍有137.3 mAh·g-1,其后的70次循环容量衰减仅4.3%.  相似文献   

13.
采用X射线衍射(XRD)、透射电镜(TEM)和电化学方法,研究Ni2+掺杂对正极材料Li3V2(PO4)3的结构、形貌和电化学性能的影响。结果表明:掺杂适量的Ni2+不会改变Li3V2(PO4)3的单斜晶系结构,但可提高材料的电导率,抑制电池在充放电过程的极化。在室温下,Li3(Ni0.05V0.95)2(PO4)3以0.1C倍率放电的初始比容量为115mA.h/g,放电倍率从0.1C增加到0.4C循环60次后,比容量衰减率仅为2.7%,而未掺杂原样Li3V2(PO4)3的初始比容量为129 mA.h/g,60次循环后比容量衰减率约为30.3%;当放电倍率增至1C时,80次循环后,Li3(Ni0.05V0.95)2(PO4)3比容量为99.8 mA.h/g,而原样的比容量为84.1 mA.h/g;当放电倍率增至5C时,循环120次后,Li3(Ni0.05V0.95)2(PO4)3比容量为67.7 mA.h/g,而原样的比容量降为0。循环伏安和交流阻抗测试表明,Li3(Ni0.05V0.95)2(PO4)3的可逆性明显优于Li3V2(PO4)3的可逆性。  相似文献   

14.
采用草酸盐前驱体合成Ti4+、Mg2+掺杂正极材料Li(Ni1/3Co1/3-xMn1/3)MxO2(M=Ti, Mg).利用XRD和SEM对其结构和形貌进行表征,并采用循环伏安、交流阻抗、恒流/恒压充放电测试其电化学性能.结果表明:Ti4+、Mg2+掺杂后晶胞体积增大,大倍率充放电时LiNi1/3Co1/3Mn1/3O2的电化学反应阻抗Rct降低,其大倍率充放电性能得到改善,Ti4+掺杂效果更好;当掺杂量x=0.025时,材料晶型完整,具有单一的a-NaFeO2层状结构;1C倍率时Li(Ni1/3Co1/3-0.025Mn1/3)Ti0.025O2的第二循环放电容量为143.2 mA-h/g,2C时为128.0 mA-h/g,经100次循环后容量分别为132.5和115.8 mA-h/g,容量保持率为92.53%和90.47%.  相似文献   

15.
采用水热法、超声辅助聚合及高温煅烧法合成了Fe3O4@C复合纳米球负极材料。通过X射线衍射(XRD)、能谱(EDS)、扫描电镜(SEM)、透射电镜(TEM)以及恒电流充放电测试等方法,研究了Fe3O4@C材料的成分、结构、形貌以及电化学性能。结果表明:在1 C时0.02~3V时,其首次充放电比容量分别为730.3、522.2m Ah/g,循环50周后容量为458.5m Ah/g,相当于61.2%的理论容量。  相似文献   

16.
以酚醛树脂作为还原剂和碳源,采用固相法在Li Mn PO4晶格中引入铁离子制备了Li Fe_xMn_(1-x)PO_4/C复合材料。考察了掺铁量、煅烧温度和煅烧时间对材料电化学性能的影响。结果表明,制备的Li Fe_xMn_(1-x)PO_4/C为纯度较高的橄榄石型相,具有类球形形貌,颗粒尺寸300~500 nm,且分布均匀。循环充放电测试结果表明,随着掺铁量的增加,Fe~(2+)/Fe~(3+)和Mn~(3+)/Mn~(2+)氧化还原电位处的平台容量分别相应地升高和下降。其中600℃煅烧10 h制得的Li Fe0.5Mn0.5PO4/C样品具有较好的电化学性能:0.1 C倍率首次放电容量为147.3 m Ah/g;2 C倍率循环100次后,放电容量从115.2 m Ah/g降至112.7 m Ah/g,容量保持率为97.8%;10 C倍率循环200次后,容量保持率仍有89.6%。  相似文献   

17.
以[Ni1/3Co1/3Mn1/3]3O4和氢氧化锂为原料,分别采用球磨法和液相法前处理工艺制备层状正极材料Li[Ni1/3Mn1/3Co1/3]O2。采用X?射线衍射(XRD)、场发射扫描电镜(FESEM)、恒流充放电等手段对材料的物理和电化学性能进行表征。结果表明:采用不同前处理工艺制备出的Li[Ni1/3Mn1/3Co1/3]O2材料在结构、形貌和电化学性能上有较大差异;与球磨处理法制备的材料相比,采用液相法前处理工艺制备的Li[Ni1/3Mn1/3Co1/3]O2不但保持了前驱体较好的球形形貌,同时还具有较好的循环稳定性和倍率性能;该样品在20mA/g电流密度下,首次放电容量为178mA·h/g,50次循环后,容量保持率达98.7%;在1000mA/g电流密度下,样品容量为135mA·h/g。  相似文献   

18.
采用高温固相法合成了锂离子电池正极材料LiFePO4及改性的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料。采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌。结果表明:改性后的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料与LiFePO4一样均为单一的橄榄石结构。以20 mA/g电流密度充放电,LiFe0.9Ni0.1PO4的首次放电容量为140 mA.h/g,较LiFePO4增加了12%;而复合掺杂得到的含碳量为2.8%的LiFe0.9Ni0.1PO4/C材料,首次放电容量达162 mA.h/g,充放电循环30次后放电电容量仍为147 mA.h/g,容量衰减仅为9%。当充放电电流密度提高到80 mA/g时,LiFePO4、LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C的放电容量分别为86、114和140 mA.h/g。改性后的LiFe0.9Ni0.1PO4/C的电化学性能得到了较大的改善。  相似文献   

19.
锂离子电池正极材料LiNi_(0.5)Co_(0.5)O_2制备与电化学性能   总被引:1,自引:1,他引:0  
采用球磨湿混和旋转合成相结合的新工艺制备了锂离子电池正极材料 L i Ni0 .5Co0 .5O2 ,并对材料进行了粒度、化学成分以及电化学性能测试。球磨湿混工艺能将原料混合均匀 ,并能有效地使粒度细化。旋转合成工艺能使混合料在均匀的温度场中进行反应 ,并使反应产物粒度均匀和成分均匀。制备的 L i Ni0 .5Co0 .5O2 为单一的 α- Na Fe O2 层状结构 ,粉末粒度分布范围窄 ,平均粒径约为 8μm~ 10μm。电化学性能测试结果表明 ,在 0 .2 m A/cm2 充放电流密度和 3 .0 V~ 4 .2 V电压范围内 ,首次充电容量为 173 m Ah/g,放电容量为 14 8m Ah/g。循环次数达 3 0次时 ,放电容量还有 12 9m Ah/g,循环稳定性良好。球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能良好的L i Ni0 .5Co0 .5O2 正极材料。  相似文献   

20.
采用共沉淀法制备掺Al3+前驱体FePO4·2H2O,并以乙二酸为还原剂,与Li2CO3反应在常温下球磨合成LiFePO4前驱混合物,后经热处理得到橄榄石型LiFe1-3y/2AlyPO4。用XRD、SEM、HRTEM和恒流充放电等对样品进行表征。结果表明:适量Al3+掺杂不会破坏LiFePO4的晶体结构,当掺杂量较低时(y=0.01),Al3+优先占据Fe位;当掺杂量较高时(y≥0.02),Al3+同时占据Li位和Fe位。电化学测试表明:LiFe0.985Al0.01PO4拥有最优的电化学性能,该样品在0.1C、1C和2C倍率下的首次放电比容量分别为162.4、152.2和142.0 mA·h/g,在1C倍率下循环100次后的放电比容量高达149.7 mA·h/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号