首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Undercooked ground beef is a leading vehicle for acquiring Escherichia coli O157:H7 infections through consumption of foods. Studies have been performed to determine the effect of freezing and the combined effect of freezing and addition of a mixture of 20% acidic calcium sulfate (final concentration of 0.4% in ground beef) and 10% lactic acid (final concentration of 0.2% in ground beef) (ACS-LA) on the thermal sensitivity of E. coli O157:H7 in ground beef. Five strains of E. coli O157: H7 were separately inoculated into ground beef and held at 5 degrees C for up to 10 days or -20 degrees C for up to 3 weeks then heated at 57, 60, 62.8, 64.3, and 68.3 degrees C to determine rates of thermal inactivation. Results revealed that D-values (decimal reduction times) at equivalent temperatures for four of five E. coli O157:H7 strains were less in the previously frozen than in the refrigerated ground beef and that strains isolated from ground beef in 1993 and 1994 were generally more sensitive to thermal inactivation than those isolated in 1999 and 2000. Only one strain of E. coli O157:H7 was used to determine the effect of ACS-LA in previously frozen or refrigerated ground beef on rates of thermal inactivation. The addition of ACS-LA to ground beef at 20 ml/kg increased the thermal sensitivity of E. coli O157:H7 in both previously frozen and refrigerated ground beef, with greatest rates of inactivation occurring in previously frozen ground beef containing ACS-LA. D-values at 57 degrees C obtained for E. coli O157:H7 in previously refrigerated and frozen ground beef containing ACS-LA and ACS-LA diluted by half were significantly (P < 0.05) less than those obtained in ground beef with no ACS-LA added. D-values at 60 and 62.8 degrees C were consistently less in ACS-LA treated ground beef, but for most treatments the results were not significantly (P > 0.05) different than the controls. Results revealed that the addition of ACS-LA to ground beef, whether frozen or refrigerated, can reduce the temperature or time required to kill E. coli O157:H7 during heating.  相似文献   

2.
For the evaluation of plating and immunological methods applicable to the detection of Escherichia coli O157:H7 from ground beef and radish sprouts, a collaborative study was conducted. It focused on a comparison of the efficiency of the plating and immunological methods using various plating agars and immuno-kits in combination with enrichment in modified E. coli broth supplemented with novobiocin (mEC + n), and using immunomagnetic separation. The plating media tested were sorbitol MacConkey agar (SMAC), SMAC supplemented with cefixime (0.05 mg/l) and potassium tellurite (2.5 mg/l) (CT-SMAC), and agars containing beta-glucuronidase substrates such as BCM O157 and CHROMagar O157. The immuno-kits used were Now E. coli, Path-Stick O157, VIP, EHEC-Tek ELISA System and Rapiblot E. coli O157. The 20 participating laboratories attempted to detect E. coli O157:H7 in 25 g chilled and frozen samples of ground beef uninoculated and inoculated with E. coli O157:H7 at levels of 138.9 and 23.9 cfu/25 g, and in 25 g chilled and frozen samples of radish sprouts uninoculated and inoculated at levels of 20.4 and 1.7 cfu/25 g. E. coli O157:H7 was recovered well from ground beef by all of the methods except direct plating with SMAC. For radish sprouts, the IMS-plating methods with CT-SMAC, BCM O157 and CHROMagar O157 were most efficient at detecting E. coli O157:H7 in more than 90% of the chilled samples inoculated at the level of 20.4 cfu/25 g. All the methods were less sensitive when applied to similar levels of E. coli O157:H7 in radish sprouts (20.4 cfu/25 g) compared with ground beef (23.9 cfu/25 g) especially if the sprouts were frozen. The sensitivity of the immuno-kits appeared to be similar to the IMS-plating methods, but the specificity was lower. Based on the results, we recommend the IMS-plating method using CT-SMAC and agars containing beta-glucuronidase substrate in combination with static enrichment incubation in mEC + n at 42 degrees C.  相似文献   

3.
Post-process contamination of fresh acid-curd cheeses with Escherichia coli O157:H7 may pose a risk considering the low infectious dose and the ability of the pathogen to survive in acidic foods. To evaluate its survival in Galotyri, a traditional Greek acid-curd cheese, portions (0.5 kg) of two commercial fresh products, one artisan (pH 3.9+/-0.1) and the other industrial (pH 3.7+/-0.1), were inoculated with approximately 3.0 or 6.5 log cfu g(-1) of a five-strain cocktail of E. coli O157:H7, including rifampicin-resistant derivatives of the strains ATCC 43895 and ATCC 51657, and stored aerobically at 4 and 12 degrees C. Survival was monitored for 28 days by plating cheese samples on tryptic soy agar with 100 mg l(-1) rifampicin (TSA+Rif), SMAC and Fluorocult E. coli O157:H7 agar media. The pathogen declined much faster (P<0.05) in the industrial as compared to the artisan cheeses at both temperatures. Thus, while E. coli O157:H7 became undetectable by culture enrichment after 14 days at 4 degrees C in industrial samples, irrespective of the inoculation level, populations of 1.4-1.9 and 4.2-5.1 log cfu g(-1) survived after 28 days in the corresponding artisan cheeses with the low and high inocula, respectively. Survival was longer and greater (P<0.05) on TSA+Rif than on SMAC and Fluorocult, indicating the presence of acid-injured cells. Interestingly, survival of E. coli O157:H7 after 14-28 days in cheeses was better at 12 degrees C than at 4 degrees C, probably due to yeasts which grew on the surface of temperature-abused cheeses. The large difference in the pathogen's inactivation between the industrial and artisan cheeses at 4 degrees C could not be associated with major differences in pH or type/concentration of organic acids, suggesting another anti-E. coli O157:H7 activity by the industrial starter. The high survival of the pathogen in artisan Galotyri under conditions simulating commercial storage should be of concern.  相似文献   

4.
This study investigated the growth and survival of E. coli O157:H7 exposed to a combination of suboptimal factors (22 degrees C, 7 degrees C, -18 degrees C/0.5% NaCl, 5.0% NaCl/pH 7.0, pH 5.4, pH 4.5/addition of lactic acid) in a simulation medium for red meat (beef gravy). Prolonged survival was noted as the imposed stress was more severe, and as multiple growth factors became suboptimal. At a defined temperature (7 degrees C or -18 degrees C), survival was prolonged at the more acid, more suboptimal pH (pH 4.5 > pH 5.4 > pH 7.0) while at a defined pH (pH 4.5), better survival was observed at 7 degrees C than at 22 degrees C. This suggests that application of the hurdle concept for preservation of food may inhibit outgrowth but induce prolonged survival of E. coli O157:H7 in minimal processed foods. At both 22 degrees C and 7 degrees C, the addition of lactic acid instead of HCl to reduce pH (to pH 4.5) resulted in a more rapid decrease of E. coli O157:H7. High survival was observed in beef gravy, pH 5.4 at -18 degrees C (simulation of frozen meat)-reduction of log 3.0 to log 1.9 after 43 days--and in beef gravy, pH 4.5 and 5% NaCl at 7 degrees C (simulation of a fermented dried meat product kept in refrigeration)--less than 1 log reduction in 43 days. In these circumstances, however, a high degree of sublethal damage of the bacterial cells was noted. The degree of sublethal damage can be estimated from the difference in recovery of the pathogen on the non-selective TSA medium and the selective SMAC medium.  相似文献   

5.
At 55 to 70 degrees C, thermal inactivation D-values for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes were 19.05 to 0.038, 43.10 to 0.096, and 33.11 to 0.12 min, respectively, in ground turkey and 21.55 to 0.055, 37.04 to 0.066, and 36.90 to 0.063 min, respectively, in ground beef. The z-values were 5.73, 5.54, and 6.13 degrees C, respectively, in ground turkey and 5.43, 5.74, and 6.01 degrees C, respectively, in ground beef. In both ground turkey and beef, significant (P < 0.05) differences were found in the D-values between E. coli O157:H7 and Salmonella or between E. coli O157:H7 and L. monocytogenes. At 65 to 70 degrees C, D-values for E. coli O157:H7, Salmonella, and L. monocytogenes were also significantly (P < 0.05) different between turkey and beef. The obtained D- and z-values were used in predicting process lethality of the pathogens in ground turkey and beef patties cooked in an air impingement oven and confirmed by inoculation studies for a 7-log (CFU/g) reduction of E. coli O157:H7, Salmonella, and L. monocytogenes.  相似文献   

6.
Raw beef producers currently face the problem of Escherichia coli O157:H7 surface contamination of beef carcasses that can lead to product adulteration. Although carcass interventions are in place, elimination of E. coli O157:H7 from every potential hiding place on the surfaces of a beef carcass is not technologically feasible. Therefore, E. coli O157:H7 on beef carcasses might further contaminate the surfaces of beef trimmings. With the use of case scenarios from nine commercial processing facilities, we present a process control and statistical sampling approach for monitoring beef trimmings to divert contaminated lots of the trimmings from the raw ground beef supply chain.  相似文献   

7.
Boneless lean beef trimmings were inoculated with multiple strains of salmonellae, Listeria monocytogenes, and Escherichia coli O157:H7 at levels of ca. 6 log10 CFU/g. pH enhancement with ammonia gas was then used to increase the pH of the trimmings to ca. 9.6. The product was then frozen, chipped, and compressed into blocks. pH enhancement reduced the populations of salmonellae, L. monocytogenes, and E. coli O157:H7 by approximately 4, 3, and 1 log10 cycles, respectively. After the product had been frozen and compressed into blocks, no salmonellae or E. coli O157:H7 were detectable by enumeration or after enrichment and isolation. The final populations of L. monocytogenes were reduced by ca. 3 log10 cycles relative to the initial populations. When uninoculated pH-enhanced lean boneless trimmings were blended with inoculated ground beef to a final concentration of 15% (wt/wt), pathogen populations in the ground beef were reduced by approximately 0.2 log10 cycles.  相似文献   

8.
Destruction of Escherichia coli O157:H7 was evaluated on inoculated apple slices dehydrated at two temperatures with and without application of predrying treatments. Half-ring slices (0.6 cm thick) of peeled and cored Gala apples were inoculated by immersion for 30 min in a four-strain composite inoculum of E. coli O157:H7. The inoculated slices (8.7 to 9.4 log CFU/g) either received no predrying treatment (control), were soaked for 15 min in a 3.4% ascorbic acid solution, or were steam blanched for 3 min at 88 degrees C immediately prior to drying at 57.2 or 62.8 degrees C for up to 6 h. Samples were plated on tryptic soy (TSA) and sorbitol MacConkey (SMAC) agar media for direct enumeration of surviving bacterial populations. Steam blanching changed initial inoculation levels by +0.3 to -0.7 log CFU/g, while immersion in the ascorbic acid solution reduced the inoculation levels by 1.4 to 1.6 log CFU/g. Dehydration of control samples for 6 h reduced mean bacterial populations by 2.9 log CFU/g (TSA or SMAC) at 57.2 degrees C and by 3.3 (SMAC) and 3.5 (TSA) log CFU/g at 62.8 degrees C. Mean decreases from initial inoculum levels for steam-blanched slices after 6 h of drying were 2.1 (SMAC) and 2.0 (TSA) log CFU/g at 57.2 degrees C, and 3.6 (TSA or SMAC) log CFU/g at 62.8 degrees C. In contrast, initial bacterial populations on ascorbic acid-pretreated apple slices declined by 5.0 (SMAC) and 5.1 (TSA) log CFU/g after 3 h of dehydration at 57.2 degrees C, and by 7.3 (SMAC) and 6.9 (TSA) log CFU/g after 3 h at 62.8 degrees C. Reductions on slices treated with ascorbic acid were in the range of 8.0 to 8.3 log CFU/g after 6 h of drying, irrespective of drying temperature or agar medium used. The results of immersing apple slices in a 3.4% ascorbic acid solution for 15 min prior to drying indicate that a predrying treatment enhances the destruction of E. coli O157:H7 on home-dried apple products.  相似文献   

9.
Reliable methods are required for the detection and enumeration of potentially injured E. coli O157 in food in the presence of outnumbering competing bacteria. Selective agents can prevent or inhibit the recovery and subsequent multiplication of injured cells and direct inoculation, either into selective enrichment broths or onto selective agar plates is still used in many methods for E. coli O157 detection and enumeration. When compared with tryptone soya agar (TSA), sorbitol MacConkey agar (SMAC) was shown to underestimate the concentration of viable E. coli O157:H7 subjected to low pH and high NaCl concentration. Using a resuscitation stage on TSA followed by membrane transfer to SMAC improved recovery to levels obtained on TSA. The membrane method was used to monitor the numbers of artificially contaminated E. coli O157:H7 during the fermentation of a meat product and demonstrated better survival when compared to counts on SMAC. Six rapid methods for the detection of E. coli O157 in food (BAX E. coli O157, Reveal 8 E. coli O157-H7 screening test, VIP EHEC, VIDAS E. coli O157 (ECO), EHEC-Tek and Tecra E. coli O157 visual immunoassay), were evaluated using beetburgers, parsley and fermented meat artificially contaminated with injured cells. Methods using direct selective enrichment, with or without an elevated incubation temperature gave false-negative results. The incorporation of a non-selective pre-enrichment medium improved the detection rates of these assays by up to ten fold.  相似文献   

10.
Commercial allyl isothiocyanate (AIT) was examined for its ability to reduce numbers of Escherichia coli O157:H7 inoculated in fresh ground beef packaged under nitrogen and stored refrigerated or frozen. A five-strain cocktail of E. coli O157:H7 containing 3 or 6 log10 cfu/g was inoculated into 100 g ground beef and formed into 10x1-cm patties. A 10-cm diameter filter paper disk treated with AIT suspended in sterile corn oil was placed on top of a single patty. One patty and paper disk were placed in a bag of Nylon/EVOH/PE with O2 permeability of 2.3 cm3 m(-2) 24 h atm at 23 degrees C. The bags were back-flushed with 100% nitrogen, heat-sealed and stored at 10, 4 and -18 degrees C for 8, 21 or 35 days, respectively. During storage, the AIT levels in the package headspaces were determined by gas liquid chromatography, and mesophilic bacteria and E. coli O157:H7 were counted. The mesophilic aerobic bacteria in ground beef patties were largely unaffected by the addition of AIT. At an initial population of 3 log10 cfu/g, E. coli O157:H7 was reduced by AIT to undetectable levels after 18 days at 4 degrees C or 10 days at -18 degrees C. In samples inoculated with 6 log10 cfu/g, a >3 log10 reduction of E. coli O157:H7 was observed after 21 days at 4 degrees C, while a 1 log10 reduction was observed after 8 and 35 days at 10 and -18 degrees C, respectively. The final AIT concentrations in the headspaces after storage at 10, 4, and -18 degrees C were 444, 456, and 112 microg/ml at 8, 21, and 35 days, respectively. Results showed that AIT can substantially reduce numbers of E. coli O157:H7 in fresh ground beef during refrigerated or frozen storage.  相似文献   

11.
4 株E. coli O157:H7毒力基因检测及其冷应激损伤   总被引:2,自引:0,他引:2  
水新云  王虎虎  高峰  江芸 《食品科学》2016,37(4):176-180
采用多重聚合酶链式反应对4 株大肠埃希氏菌O157:H7(Escherichia coli O157:H7)进行毒力特性评价,研究3 种常用选择性生长基质对E.coli O157:H7的精确定量对比,筛选出的适宜选择性培养基用于冷应激时菌体损伤的研究。结果显示,菌株CICC 21530的stx1、stx2、eae基因均为阳性,NCTC 12900和牛肉分离菌1的eae呈现阳性,牛肉分离菌2三种毒力基因均为阴性,表明4 株菌的致病性不同;4 株测试菌在改良山梨醇麦康凯琼脂(cefiximetelluritesorbitol macconkey agar,CT-SMAC)上计数均显著低于胰蛋白胨大豆琼脂(tryptose soya agar,TSA)上计数(P<0.05),而SMAC和改良伊红美蓝琼脂(modified eosin methylene blue agar,mEMB)上的计数与TSA相比无显著性差异,表明改良SMAC对正常菌体既有较强抑制作用,不适合用于E. coli O157:H7的精确计数,可以选用SMAC或mEMB;进一步以SMAC和mEMB作为选择性培养基研究菌体在4 ℃冷应激时的损伤情况,结果表明冷藏过程中SMAC、mEMB及TSA上的菌数均逐渐下降,第10天时4 株菌均发生了一定程度的损伤或死亡。本方法可为食品安全中E. coli O157:H7的定量评估和风险控制提供科学依据。  相似文献   

12.
A new medium (Escherichia coli O157:H7 medium: EOH) was developed for differentiation between E. coli and E. coli O157:H7. The EOH medium was compared with sorbitol MacConkey agar (SMAC), which is the most popular medium to enumerate E. coli O157:H7. Several combinations of 35 dyes were evaluated to develop the new medium. Indigo carmine (0.03) g/liter) and phenol red (0.036 g/liter) were found as the best combination for differentiation between E. coli O157:H7 and E. coli and added to the basal agar medium (SMAC medium excluding neutral red and crystal violet) for EOH medium. On the dark blue EOH medium, E. coli produced a yellow color with clear zone, whereas E. coli O157:H7 produced a red color without clear zone. For differentiation between E. coli and E. coli O157:H7, EOH has much better potential than SMAC. Furthermore. the red color produced by normal E. coli in SMAC may mask the light gray color produced by E. coli O157: H7, whereas the yellow color with clear zone did not mask the red color without clear zone in the EOH medium. The recovery numbers of E. coli O157:H7 from inoculated ground beef, pork, and turkey were not significantly different between SMAC and EOH media (P > 0.05). The recovery rates of heat- and cold-injured E. coli O157:H7 also were not significantly different (P > 0.05).  相似文献   

13.
To improve enrichment and isolation of Escherichia coli O157:H7, this study evaluated increased incubation temperature and cefixime-tellurite (CT) on five strains of each of the following bacteria, E. coli, Hafnia alvei, Enterobacter spp., Citrobacter freundii and E. coli O157:H7, and two strains of E. coli O157:nH7. These were grown in pure culture in LST broth with varying cefixime-tellurite concentrations. A range of incubation temperatures from 37 to 46 degrees C was investigated for the inhibition of cohabitant microorganisms. Minced beef, spiked with E. coli O157:H7 and cohabitant microorganisms was investigated. Increased incubation temperature (42 degrees C) and treatment with half of the prescribed amount of cefixime-tellurite by BAM for SMAC agar in enrichment step were the most effective in selectively growing E. coli O157:H7. The results show that E. coli O157:H7 is more resistant to these two conditions than the other cohabitant bacteria.  相似文献   

14.
The objective of this study was to evaluate the thermal inactivation of Escherichia coli O157:H7 in ground beef cooked to an internal temperature of 71.1 degrees C (160 degrees F) under conditions simulating consumer-style cooking methods. To compare a double-sided grill (DSG) with a single-sided grill (SSG), two different cooking methods were used for the SSG: for the one-turnover (OT-SSG) method, a patty was turned once when the internal temperature reached 40 degrees C, and for the multiturnover (MT-SSG) method, a patty was turned every 30 s. Patties (100 g, n = 9) inoculated with a five-strain mixture of E. coli O157: H7 at a concentration of 10(7) CFU/g were cooked until all three temperature readings (for two sides and the center) for a patty were 71.1 degrees C. The surviving E. coli O157:H7 cells were enumerated on sorbitol MacConkey (SMAC) agar and on phenol red agar base with 1% sorbitol (SPRAB). The order of the cooking methods with regard to the cooking time required for the patty to reach 71.1 degrees C was as follows: DSG (2.7 min) < MT-SSG (6.6 min) < OT-SSG (10.9 min). The more rapid, higher-temperature cooking method was more effective (P < 0.01) in destroying E. coli O157:H7 in ground beef. E. coli O157:H7 reduction levels were clearly differentiated among treatments as follows: OT-SSG (4.7 log10 CFU/g) < MT-SSG (5.6 log10 CFU/g) < DSG (6.9 log10 CFU/g). Significantly larger numbers of E. coil O157:H7 were observed on SPRAB than on SMAC agar. To confirm the safety of ground beef cooked to 71.1 degrees C, additional patties (100 g, n = 9) inoculated with lower concentrations of E. coli O157:H7 (10(3) to 10(4) CFU/g) were tested. The ground beef cooked by the OT-SSG method resulted in two (22%) of nine samples testing positive after enrichment, whereas no E. coli O157:H7 was found for samples cooked by the MT-SSG and DSG methods. Our findings suggest that consumers should be advised to either cook ground beef patties in a grill that cooks the top and the bottom of the patty at the same time or turn patties frequently (every 30 s) when cooking on a grill that cooks on only one side.  相似文献   

15.
A study was conducted to investigate the antimicrobial effect of sodium lactate (NaL) (0, 1.5, 3.0, and 4.5%) on the survival of Escherichia coli O157:H7 in 93% lean ground beef. Samples inoculated with a mixture of four strains of E. coli O157:H7 (10(7) to 10(8) CFU/g) were subjected to immersion heating in a water bath stabilized at 55, 57.5, 60, 62.5, or 65 degrees C. Results of statistical analysis indicated that the heating temperature was the only factor affecting the decimal reduction times (D-values) of E. coli O157:H7 in 93% lean ground beef. The change in temperature required to change the D-value (the z-value) was determined as 7.6 degrees C. The thermal resistance of this organism was neither affected by the addition of NaL nor by the interactions between NaL and temperature. Adding NaL to ground beef to reduce the thermal resistance of E. coli O157:H7 is therefore not recommended.  相似文献   

16.
Escherichia coli O157:H7 is a serious and common human pathogen that can cause diarrhoea, haemorrhagic colitis, and haemolytic uraemic syndrome (HUS). This study evaluated the enrichment, detection and confirmation procedures for the isolation of E. coli O157:H7 from raw ground beef and raw drinking milk. The purpose of this investigation was to compare Rainbow Agar O157 (RB; Biolog, Hayward, USA), Biosynth Culture Medium O157:H7 (BCM O157:H7; Biosynth, Staad, Switzerland) and Fluorocult HC (HC; Merck, Darmstadt, Germany) with the conventional Sorbitol MacConkey Agar (SMAC, Merck) using mEC + n (raw ground beef) and mTSB + n (raw milk) enrichment media. Single-path GLISA test (Gold Labeled Immuno Sorbent Assay; Merck) was used as the confirmation test. Growth of 466 strains of gram-negative rods isolated from food samples and 46 known E. coli strains from type culture and other collections (34 E. coli O157:H7 strains and 12 serotypes other than E. coli O157:H7) was examined on the agar media. The E. coli O157:H7 strains could readily be isolated and recognized uniquely by their typical black/grey colonies on RB and blue/black colonies on BCM O157:H7. Examination of the 46 known strains of E. coli reference strains showed false negative results on BCM O157:H7 (3.0%), RB (8.8%), HC (5.9%) and SMAC (5.9%) agars. On BCM O157:H7 no false negative results were found with the typical E. coli O157:H7 (beta-D-glucuronidase and sorbitol negative strains). One of two atypical E. coli O157:H7 strains (beta-D-glucuronidase positive) showed similar colouration to the typical strains and was mis-identified by each of the three media (RB, BCM O157:H7, and SMAC agar media). None of the 60 food samples tested yielded E. coli O157:H7. Examination of the food samples, showed that RB gave the lowest number of false positives. The percentages were RB (2.1%), BCM O157:H7 (3.3%), HC (6.2%), and SMAC (57.3%).  相似文献   

17.
Inactivation of Escherichia coli O157:H7 was evaluated on inoculated apple slices without pretreatment or pretreated by immersing in water or acid solutions commonly used to help retain apple color during dehydration, then stored at ambient temperature or dried for 6 h. Half-ring slices (0.6 cm thick) of peeled and cored Gala apples were inoculated by immersion for 30 min in a three-strain composite inoculum of E. coli O157:H7 (7.8-8.0 CFU/g). Inoculated slices received (1) no pre-drying treatment (control); or a 10-min immersion in solutions of (2) sterile water, (3) 2.8% ascorbic acid, (4) 1.7% citric acid, (5) 50% commercial lemon juice, or (6) 50% commercial lemon juice with preservatives. Drained slices were placed in sterile plastic bags and stored at room temperature (25+/-2 degrees C) for up to 6 h or dehydrated (62.8 degrees C) for up to 6 h. Samples were plated on tryptic soy agar (TSA) and sorbitol MacConkey agar (SMAC) for direct enumeration of surviving bacteria at various time intervals. Immersion in sterile water or acidic solutions caused initial bacterial reductions of 0.9-1.3 log CFU/g on apple slices. Between 0 and 6 h of storage at room temperature, slices dipped in acidic solutions showed minor changes in bacterial populations (-0.2 to +0.6 log CFU/g) compared to a 1.1 log CFU/g increase for slices dipped in sterile water. The no treatment samples (control) showed an increase in bacterial populations of 1.3-1.5 CFU/g over the 6-h holding time. For apple slices dried at 62.8 degrees C, bacterial populations were reduced by 2.5 (SMAC) and 3.1 (TSA) log CFU/g in the control (no pre-drying treatment) samples following 6 h dehydration. The slices immersed in sterile water showed a 5.8 (SMAC) and 5.1 (TSA) reduction after 6 h of dehydration. In contrast, after 6 h of dehydration bacterial populations on the four acid-pretreated products were reduced by 6.7-7.3 log CFU/g. The results showed that acidic treatment alone was not effective in destroying E. coli O157:H7 on apple slices but did inhibit growth of the organism during holding before drying. However, pretreatment of the apple slices with common household acidulants enhanced destruction of E. coli O157:H7 during drying compared to slices dried without treatment.  相似文献   

18.
Thermal inactivation studies were used to determine the D- and z-values of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in ready-to-eat chicken-fried beef patties. Inoculated meat was packaged in sterile bags, which were immersed in a circulated water bath and held at 55, 57.5, 60, 62.5, 65, 67.5, and 70 degrees C for different lengths of time. D- and z-values were determined with a linear regression model. Average D-values at temperatures 55 to 70 degrees C were 27.62 to 0.04 min for E. coli 0157:H7, 67.68 to 0.22 min for Salmonella, and 81.37 to 0.31 min for L. monocytogenes. The z-values were 5.2 degrees C for E. coli O157:H7, 6.0 degrees C for Salmonella, and 6.1 degrees C for L. monocytogenes. The results of this study can be used by food processors to validate their processes and help eliminate pathogenic bacteria associated with chicken-fried beef products.  相似文献   

19.
The efficacy of a peroxyacetic acid formulation (POAA) at reducing Escherichia coli O157:H7 contamination on external carcass surfaces of hot-boned beef and veal with a commercial spray apparatus was determined. Hot-boned external carcass surfaces were inoculated with either a high dose (10(6) CFU/cm2) in fresh bovine feces or with a low dose (10(3) CFU/cm2) in diluent of laboratory-cultured E. coli O157:H7. Treatments included a water wash, a POAA (180 ppm) wash, or a water plus POAA wash. Samples were extracted from the external carcass surface with a cork borer to determine the numbers of viable E. coli O157:H7 remaining on the carcass surface after treatment. Although a water wash alone resulted in a 1.25 (94.4%) and a 1.31 (95.1%) mean log reduction on veal and beef inoculated with a high dose of E. coli O157:H7, the POAA treatment resulted in a substantially greater mean log reduction of 3.56 and 3.59 (>99.9%). The water wash only resulted in a 33.9% reduction on veal and 62.8% on beef inoculated with a low dose of E. coli O157:H7, whereas POAA treatment greatly improved pathogen reduction to 98.9 and 97.4% on veal and beef, respectively. The combination of a water wash followed by a POAA treatment resulted in a similar E. coli O157:H7 reduction to that achieved by POAA treatment alone. In conclusion, POAA treatment significantly reduced viable E. coli O157:H7 numbers on experimentally contaminated beef and veal carcasses, which justifies its use as a chemical intervention for the removal of this human pathogen.  相似文献   

20.
Fresh meat products can become contaminated with the pathogen Escherichia coli O157:H7 during the slaughter process; therefore, an E. coli O157:H7 indicator to verify the effectiveness of process controls in slaughter establishments would be extremely useful. The hides of 20 beef cattle were sampled, and 113 bacterial isolates were obtained. Thirteen of these isolates representing four genera, Escherichia, Enterobacter, Providencia, and Serratia, were selected based on growth and biochemical characteristics similar to those of five clinical strains of E. coli O157:H7. The temperature sensitivity was determined for the individual isolates and the five E. coli O157:H7 strains at 55 and 65 degrees C. D65-values for all 13 isolates were not significantly different from D65-values of the E. coli O157:H7 strains. E. coli isolates were the only isolates whose D55-values were not significantly different from those of the E. coli O157:H7 strains. E. coli isolates P3 and P68 were more resistant to the effects of 55 degrees C than were the other E. coli isolates but were not significantly different from E. coli O157:H7 WS 3331 (P > 0.05). The remaining E. coli isolates (P1, P8, and P14) were not significantly different from E. coli O157:H7 strains ATCC 35150, ATCC 43894, ATCC 43895, and WS 3062 (P > 0.05). Prerigor lean and adipose beef carcass tissue was artificially contaminated with stationary-phase cultures of the five E. coli beef cattle isolates or a cocktail of five E. coli O157:H7 strains in a fecal inoculum. Each tissue sample was processed with the following microbial interventions: 90 degrees C water; 90 degrees C water followed by 55 degrees C 2% lactic acid; 90 degrees C water followed by 20 degrees C 2% lactic acid; 20 degrees C water followed by 20 degrees C 2% lactic acid; 20 degrees C water followed by 20 degrees C 20 ppm chlorine; and 20 degrees C water followed by 20 degrees C 10% trisodium phosphate. The appropriateness of the E. coli isolates as potential E. coli O157:H7 indicators was dependent upon the microbial intervention utilized. For all microbial intervention methods applied irrespective of tissue type, the mean log reductions of at least two E. coli isolates were not significantly different from the mean log reduction of the E. coli O157:H7 cocktail (P > 0.05). Because of the frequent employment of multiple microbial interventions in the cattle industry, no single isolate can realistically represent the effectiveness of all microbial interventions for reduction of E. coil O157:H7. Thus, the use of a combination of E. coli isolates may be required to accurately predict the effectiveness of microbial intervention methods on the reduction of E. coli O157:H7 in beef carcass tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号