首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowing the 3D distribution of a consolidant within the porous network of a rock is essential for understanding the porosity quantitative data obtained by mercury porosimetry and for observing the effect of consolidants on pore interconnection. In this work, we show for the first time that the distribution of consolidant in the porous network can be determined using laser scanner confocal microscopy (LSCM). Results indicate that consolidants are concentrated in pore throats of less than 40 microm in diameter, affecting both the porous interconnection and the circulation of fluids. LSCM allowed demonstration of the fact that the increase in microporosity detected by mercury porosimetry is due to the development of fissures within the consolidants. No consolidant that produces this kind of fissure can be used in the consolidation of building stones, since it would increase microporosity and, in consequence, vulnerability to weathering agents.  相似文献   

2.
浅谈共聚焦显微技术   总被引:1,自引:1,他引:0  
陈木旺 《光学仪器》2013,35(1):44-47
共聚焦显微镜以其高对比度、高分辨率及可重建三维图像的独特优势,在生物医学研究、微细加工、半导体和高分子材料的生产检测等领域获得广泛应用。常用的共聚焦技术方法有:传统的激光扫描共聚焦显微镜(LSCM),其特点是获得的图像对比度和分辨率高,但需要逐点扫描,帧成像时间长,系统复杂,体积大,价格昂贵;碟片共聚焦显微镜(SDCM)是采用多光束扫描的方法来获得共聚焦图像,速度可以大大提高,但牺牲了共聚焦图像的分辨率,系统更为复杂,且不能调整轴向分辨率;结构光显微镜(SIM)具有方法简单,可模块化设计,成本低,成像质量接近于激光扫描共聚焦显微镜,成像速度快,性价比较高。  相似文献   

3.
In the present work, we propose the use of the Laser Scanning Confocal Microscopy (LSCM) to determine the effect of water repellents on rock's pore-network configuration and interconnection. The rocks studied are sandstones of Miocene age, a building material that is commonly found in the architectural heritage of Tunisia. The porosity quantitative data of treated and untreated samples, obtained by mercury porosimetry tests, were compared. The results show a slight decrease in total porosity with the water repellent treatment, which reduced both microporosity and macroporosity. This reduction produced a modification in pore size distribution and a shift of the pore access size mode interval toward smaller pore diameters (from the 30-40 microm to the 20-30 microm intervals). The water repellent was observed in SEM images as a continuous film coating grain surfaces; moreover, it was easily visualized in LSCM, by staining the water repellent with Epodye fluorochrome, and the coating thickness was straightforwardly measured (1.5-2 microm). In fact, the combination of mercury intrusion porosimetry data and LSCM observations suggests that the porosity reduction and the shift of the pore diameter mode were mainly due to the general reduction of pore diameters, but also to the plugging of the smallest pores (less than 3-4 microm in diameter) by the water repellent film. Finally, the LSCM technique enabled the reconstruction of 3D views of the water repellent coating film in the pore network, indicating that its distribution was uniform and continuous over the 100 microm thick sample. The LSCM imaging facilitates the integration and interpretation of mercury porosimetry and SEM data.  相似文献   

4.
Langerhans cells (LCs) play a sentinel role by initiating both adaptive and innate immune responses to antigens pertinent to the skin. With the discovery of various LCs markers including antibodies to major histocompatibility complex class II (MHC-II) molecules and CD1a, intracellular presence of racket-shaped "Birbeck granules," and very recently Langerin/CD207, LCs can be readily distinguished from other subsets of dendritic cells. Femtosecond two-photon laser scanning microscopy (TPLSM) in recent years has emerged as an alternative to the single photon-excitation based confocal laser scanning microscope (CLSM), particularly for minimally-invasive deep-tissue 3D and 4D vital as well as nonvital biomedical imaging. We have recently combined high resolution two-photon immunofluorescence (using anti MHC-II and Langerin/CD207 antibodies) imaging with microspectroscopy and advanced image-processing/volume-rendering modalities. In this work, we demonstrate the use of this novel state-of-the-art combinational approach to characterize the steady state 3D organization and spectral features of the mouse epidermis, particularly to identify the spatial distribution of LCs. Our findings provide unequivocal direct evidence that, in the mouse epidermis, the MHC-II and mLangerin/CD207 antigens do indeed manifest a high degree of colocalization around the nucleus of the LCs, while in the distal dendritic processes, mLangerin/CD207 antigens are rather sparsely distributed as punctuate structures. This unique possibility to simultaneously visualize high resolution 3D-resolved spatial distributions of two different immuno-reactive antigens, namely MHC-II and mLangerin/CD207, along with the nuclei of LCs and the adjacent epidermal cells can find interesting applications. These could involve aspects associated with pragmatic analysis of the kinetics of LCs migration as a function of immuno-dermatological responses during (1) human Immunodeficiency virus disease progression, (2) vaccination and targeted gene therapy, (3) skin transplantation/plastic surgery, (4) ultraviolet and other radiation exposure, (5) tissue-engineering of 3D skin constructs, as well as in (6) cosmetic industry, to unravel the influence of cosmeceuticals.  相似文献   

5.
A small-scale biomechanical disc culture system was designed to stimulate intervertebral disc (IVD) 'motion segment' in culture environment with load-controlled compression and combined load (compression+shear). After 7 days of diurnal mechanical loading, cell viability of discs stimulated with static compression load (0.25 MPa) and static combined load (compression (0.25 MPa)+shear (1.5N)) were similar (>90 per cent) to unloaded controls. Mechanically stimulated discs showed decrease in static/dynamic moduli, early stress relaxation, and loss of disc height after 7 days of diurnal loading. Histological data of discs indicated load-induced transformations that were not apparent in controls. The feasibility of studying the mechanobiology of intact IVD as a motion segment was demonstrated. Media conditioning (improve tissue stability in long-term culture) and application of biochemical gene expression assays (differential tissue response to types of mechanical stimulation) are proposed as future improvements. The study suggests that the limitations in studying mechanobiology of IVD pathology in vitro can be overcome and it is possible to understand the physiologically relevant mechanism of IVD pathology.  相似文献   

6.
The process of corneal endothelial wound healing was studied using laser and tandem scanning confocal microscopy (LSCM and TSCM). Following transcorneal freeze (TCF) injury, rabbit corneas were observed using ex vivo LSCM and in vivo TSCM. LSCM revealed the intracellular actin filament organization which, stained with phalloidin-FITC, in migrating endothelial cells, transformed fibroblast-like cells, stroma keratocytes, and epithelial cells during wound healing in corneal tissue. The TSCM provided sequential spatial observation of morphologic changes from endothelium to epithelium of the cornea during in vivo cellular repair of wound healing noninvasively on the same cornea without animal sacrifice. Ex vivo LSCM supported the morphologic analysis of the in vivo TSCM observations.  相似文献   

7.
The process of corneal endothelial wound healing was studied using laser and tandem scanning confocal microscopy (LSCM and TSCM). Following transcorneal freeze (TCF) injury, rabbit corneas were observed using ex vivo LSCM and in vivo TSCM. LSCM revealed the intracellular actin filament organization which, stained with phalloidin-FITC, in migrating endothelial cells, transformed fibroblast-like cells, stroma keratocytes, and epithelial cells during wound healing in corneal tissue. The TSCM provided sequential spatial observation of morphologic changes from endothelium to epithelium of the cornea during in vivo cellular repair of wound healing noninvasively on the same cornea without animal sacrifice. Ex vivo LSCM supported the morphologic analysis of the in vivo TSCM observations.  相似文献   

8.
在微机电系统中,三维微结构分析是对微加工工艺进行表征的一种重要手段。随着微机电系统研究的深入和产业化的需求,其微结构分析在微机电系统中的重要性日益凸现。激光共聚焦扫描显微镜因其高分辨率、非接触、数据结构分析快等优点,在微结构分析中得到了大量的应用。本文介绍激光共聚焦扫描显微镜的成像原理,重点介绍激光共聚焦显微镜在大角度测量和形貌分析中的应用。同时,与台阶仪、扫描电子显微镜和白光干涉仪相比较,指出激光共聚焦扫描显微镜在微结构分析中的优点和局限性。  相似文献   

9.
10.
Huang Z  Chen R  Li Y  Zhuang H  Chen J  Wang L 《Scanning》2008,30(6):443-447
Autofluorescence spectra and optical imaging of Platymonas subcordiformis after irradiation of diode laser were observed via laser scanning confocal microscopy (LSCM). With 488 nm Ar(+) laser excitation, the horizontal and vertical dimensions of a cup-shaped chloroplast of the irradiation group increased about 10% compared with the control group. The fluorescence spectra were similar between irradiation group and control group with a maximum fluorescence band around 682 nm, whereas the former has a higher intensity. Image of a small circular substance with stronger two-photon autofluorescence (TPA) was obtained when using two-photon excitation wavelength of 800 nm in single-channel mode. Further analysis by the 800 nm excitation based on two independent-channels mode showed an emission band of the small circular substance around 376-505 nm, which corresponded to the eyespot of P. subcordiformis. In lambda scanning mode, with two-photon wavelength of 800 nm excitation, six fluorescence peaks that are located at 465, 520, 560, 617, 660 and 680 nm were observed; the fluorescence intensity of the irradiation group was higher than that of the control group, especially at 520, 560 and 617 nm. As a conclusion, diode laser irradiation can promote chloroplast growth of P. subcordiformis cells in the form of expanding area and the increasing content of protein, phospholipids and chlorophyll. LSCM, especially TPA imaging based on femtosecond laser excitation, provides a nondestructive, real-time and accurate method to study changes of living algal cells under laser irradiation and other environmental factors.  相似文献   

11.
Three‐dimensional (3D) morphometric analysis of cellular and subcellular structures provides an effective method for spatial cell biology. Here, 3D cellular and nuclear morphologies are reconstructed to quantify and compare morphometric differences between normal and apoptotic endothelial cells. Human umbilical vein endothelial cells (HUVECs) are treated with 60 μM H2O2 to get apoptotic cell model and then a series of sectional images are acquired from laser scanning confocal microscopy. The 3D cell model containing plasma membrane and cell nucleus is reconstructed and fused utilizing three sequential softwares or packages (Mimics, Geomagic, and VTK). The results reveal that H2O2 can induce apoptosis effectively by regulating the activity of apoptosis‐related biomolecules, including pro‐apoptotic factors p53 and Bax, and anti‐apoptotic factor Bcl‐2. Compared with the normal HUVECs, the apoptotic cells exhibit significant 3D morphometric parameters (height, volume and nucleus‐to‐cytoplasm ratio) variation. The present research provides a new perspective on comparative quantitative analysis associated with cell apoptosis and points to the value of LSCM as an objective tool for 3D cell reconstruction. Microsc. Res. Tech. 76:1154–1162, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging.  相似文献   

13.
Multiphoton microscopy in life sciences   总被引:13,自引:1,他引:12  
Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three‐dimensional fluorescence imaging based on non‐resonant two‐photon or three‐photon fluorophor excitation requires light intensities in the range of MW cm?2 to GW cm?2, which can be derived by diffraction limited focusing of continuous wave and pulsed NIR laser radiation. NIR lasers can be employed as the excitation source for multifluorophor multiphoton excitation and hence multicolour imaging. In combination with fluorescence in situ hybridization (FISH), this novel approach can be used for multi‐gene detection (multiphoton multicolour FISH). Owing to the high NIR penetration depth, non‐invasive optical biopsies can be obtained from patients and ex vivo tissue by morphological and functional fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, lipofuscin, porphyrins, collagen and elastin. Recent botanical applications of multiphoton microscopy include depth‐resolved imaging of pigments (chlorophyll) and green fluorescent proteins as well as non‐invasive fluorophore loading into single living plant cells. Non‐destructive fluorescence imaging with multiphoton microscopes is limited to an optical window. Above certain intensities, multiphoton laser microscopy leads to impaired cellular reproduction, formation of giant cells, oxidative stress and apoptosis‐like cell death. Major intracellular targets of photodamage in animal cells are mitochondria as well as the Golgi apparatus. The damage is most likely based on a two‐photon excitation process rather than a one‐photon or three‐photon event. Picosecond and femtosecond laser microscopes therefore provide approximately the same safe relative optical window for two‐photon vital cell studies. In labelled cells, additional phototoxic effects may occur via photodynamic action. This has been demonstrated for aminolevulinic acid‐induced protoporphyrin IX and other porphyrin sensitizers in cells. When the light intensity in NIR microscopes is increased to TW cm?2 levels, highly localized optical breakdown and plasma formation do occur. These femtosecond NIR laser microscopes can also be used as novel ultraprecise nanosurgical tools with cut sizes between 100 nm and 300 nm. Using the versatile nanoscalpel, intracellular dissection of chromosomes within living cells can be performed without perturbing the outer cell membrane. Moreover, cells remain alive. Non‐invasive NIR laser surgery within a living cell or within an organelle is therefore possible.  相似文献   

14.
The ability to have precise control over internal channel architecture, porosity, and external shape is essential for tissue engineering. The feasibility of using indirect stereo-lithography (SL) to produce scaffolds from calcium phosphate cement materials for bone tissue engineering has been investigated. The internal channel architecture of the scaffolds was created by removal of the negative resin moulds made with SL. Scanning electron microscopy (SEM) showed highly open, well-interconnected channel architecture. The X-ray diffraction examination revealed that the hydroxyapatite phase formed at room temperature in the cement was basically stable up to 850 degrees C. There was no phase decomposition of hydroxyapatite, although the crystallinity and grain size were different. The ability of resulting structure to support osteoblastic cells culture was tested in vitro. Cells were evenly distributed on exterior surfaces and grew into the internal channels of scaffolds. To exploit the ability of this technique, anatomically shaped femoral supracondylar scaffolds with 300-800 microm interconnected channels were produced and characterized.  相似文献   

15.
D-柠檬烯对人胃癌MGC803细胞增殖和凋亡的影响   总被引:4,自引:0,他引:4  
目的研究D-柠檬烯对人胃癌MGC803细胞生长抑制和凋亡的影响。方法噻唑蓝(MTT)法比色检测细胞生长情况;流式细胞仪检测细胞凋亡率;激光共聚焦检测细胞内活性氧(reactive oxygen species,ROS)的含量和caspase-3蛋白的表达。结果D-柠檬烯对人胃癌MGC803细胞生长抑制作用呈剂量依赖关系;流式细胞仪检测发现D-柠檬烯可引起MGC803细胞凋亡,且呈时间依赖性;激光共聚焦显微镜荧光检测发现D-柠檬烯处理的细胞内ROS明显升高(P〈0.05),caspase-3蛋白表达明显增加(P〈0.05)。结论D-柠檬烯能够有效地抑制癌细胞的生长以及诱导凋亡,这种作用机制可能是使MGC803细胞内产生大量的活性氧,也可能与细胞内caspase-3基因的表达变化有关。  相似文献   

16.
The technique of serial optical sectioning by confocal microscopy, in conjunction with off-line digital image analysis, was used to quantify the radial distribution of damaged cells in rat pancreatic islets following cryopreservation. The process consists of imaging frozen-thawed islets of Langerhans using laser scanning confocal microscopy (LSCM). The three-dimensional (3-D) distribution and analysis of the two populations of viable and damaged cells was visualized via acridine orange/propidium iodide (AO/PI) fluorescent staining. In preparation for cryopreservation, isolated and cultured rat pancreatic islets were brought to a 2 m concentration of dimethyl sulphoxide (DMSO) by serial addition at decreasing temperatures. Ice was nucleated in the islet suspension at ?10°C, and individual specimens were frozen to ?70°C at cooling rates of 1, 3, 10 and 30°C/min in a programmable bulk freezer and subsequently stored in liquid nitrogen. After rapid thawing and serial dilution to remove DMSO, individual islets were prepared with AO/PI stains for imaging on the LSCM. Serial sections of the islets, 2–7 μm in thickness, were obtained and processed to obtain high-contrast images. Analysis algorithms consisted of template masking, grey-level thresholding, median filtering and 3-D blob colouring. The radial distribution of damaged cells in the islets was determined by isolating the cell and computing its distance from the centroid of the 3-D islet volume. An increase in the number of blobs corresponding to single and/or aggregates of damaged cells was observed progressively with distance from the centre towards the periphery of the islet. This pattern of freeze-induced killing of cells within the islet was found to occur consistently in the numerous individual specimens processed.  相似文献   

17.
Two-photon laser scanning microscopy (TPLSM) was used to directly measure glutathione (GSH) as its fluorescent glutathione S-bimane conjugate (GSB) in developing root hair cells (trichoblasts) and non-root hair cells (atrichoblasts) of intact Arabidopsis roots. In comparison to confocal microscopy, TPLSM showed more detail deep within the tissue with less signal attenuation. The total level of GSB labelling reached a plateau after 60 min in both trichoblasts and atrichoblasts, reflecting depletion of GSH. GSB was formed initially in the cytoplasm and was subsequently transported into the vacuole. The volume ratio of vacuole to cytoplasm was determined using the Cavalieri estimator of volume and used to calculate the amount of GSB per volume of cytoplasm in each cell type. At the end of the time-course the cytoplasmic concentration of GSB was 2.7 ± 0.5 m m ( n  = 5) in trichoblasts and 5.5 ± 0.8 m m ( n  = 5) in atrichoblasts. In trichoblasts this value represents the initial concentration of GSH in the cytoplasm. Labelling of roots with monochlorobimane (MCB) on ice led to the formation of GSB in the cytoplasm, but prevented vacuolar sequestration. After washing prelabelled roots and transfer to room temperature, vacuolar transport resumed. Although no free MCB was present the total amount of GSB in atrichoblasts increased further, indicating that the higher values recorded in the atrichoblasts might reflect additional symplastic transport and sequestration of GSB from neighbouring cells.  相似文献   

18.
Site‐specific accumulation of flavonoids in Apocyni Veneti Folium was determined by laser scanning confocal microscope (LSCM) and the localization of catechins also was observed via vanillin‐HCl staining under the conventional optical microscope. The contents of five flavonoids in Apocyni Veneti Folium from different harvest times and growth parts were measured using HPLC method. LSCM observation showed that flavonoids are accumulated in cuticle of epidermal cells and vessel walls, especially in protoplasts and nucleolus of the collenchyma cells and the epidermal cells. Catechins are localized in the palisade parenchyma cells and vessel walls, particularly in the laticifers found in the phloem. On the basis of the difference of the maximal emission wavelength between quercetin and kaempferol derivatives which have fluorescence behavior by appropriate treatment, kaempferol and its derivatives are localized exclusively in the cuticle. Results showed that the content of astragalin in Apocyni Veneti Folium from different parts revealed the decreasing trend, while hyperin and isoquercitrin were higher in June and July analyzed by HPLC. In summary, the site‐specific accumulation of flavonoids in Apocyni Veneti Folium can be determined by LSCM and vanillin‐HCl staining. The contents of flavonoids in Apocyni Veneti Folium are correlated with harvest times and growth parts.  相似文献   

19.
Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.  相似文献   

20.
By monitoring coenzyme autofluorescence modifications. as an indicator of cell damage. the cellular response to femtosecond near-infrared (NIR) radiation (two-photon absorption) was compared with exposure to low-power UV A radiation (one-photon absorption). Excitation radiation from a tunable Ti-sapphire laser. focused through highnumerical- aperture microscope optics. provided diffractionlimited mlcrobeams of an adjustable peak power. Laser scanning NIR microscopy was used to detect spatially the intracellular distribution of fluorescent coenzymes by fluorescence intensity imaging as well as fluorescence lifetime imaging (T-mapping). Upon the onset of UV or NIR exposure. Chinese hamster ovary cells exhibited blue/green autofluorescence witq a mean lifetime of 2·2 ns. which was attributed to NAD(P)H in mitochondria. Exposure to 365 nm radiation from a high-pressure mercury lamp (1 m W. 300 J cm-2 ) resulted in oxidative stress correlated with increased autofluorescence intensity. onset of nuclear fluorescence. and a fluorescence lifetime decrease. The cellular response to femtosecond NIR micro beams depended significantly on peak power. Peak powers above a threshold value of about 0·5kW (average power: 6mW). 0·55kW (7mW) and 0·8kW (lOmW) at 730nm. 760nm and 800nm. respectively. resulted in the onset of short-lived luminescence with higher intensity (100x) than the intracellular NAD(P)H fluorescence. This luminescence. accompanied by destruction of cellular morphology. was localized and occurred in the mitochondrial region. In contrast. beams at a power of less than 0·5 kW allowed nondestructive fluorophore detection with high spatial and temporal resolution without modification of cellular redox state or cell morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号