首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
2.
锂离子电池正极材料磷酸铁锂的研究现状   总被引:1,自引:0,他引:1  
LiFePO4正极材料具有原料来源广泛、比容量高、工作电压适中、循环性能好和电化学性能稳定等优点,被认为是下一代锂离子电池首选正极材料.介绍了LiFePO4的橄榄石型晶体结构及主要合成工艺,讨论了针对其缺点的改性研究,并对LiFePO4未来发展方向作了展望.  相似文献   

3.
2008年6月,第十四届国际锂电池会议在天津滨海新区召开。与会专家一致认为,相对于传统的铅酸电池、镍氢电池、镍镉电池等其他二次电池,锂离子电池以其电容量大、安全性佳、体积轻巧、耐高温及循环寿命长等优异性能正在逐步占领市场,未来将成为二次电池市场的主力;锂离子电池的重要构成部分——正极材料,对锂离子电池的发展起着决定性的作用,目前常用的锂离子电池的正极材料主要有钴酸锂、镍钴锰、锰酸锂、磷酸铁锂,其中磷酸铁锂以其明显的优势获得了业内人士的认可,大家一致认为未来2—3年内磷酸铁锂必将成为锂离子电池材料的主流。  相似文献   

4.
锂离子电池正极材料磷酸铁锂:进展与挑战   总被引:2,自引:1,他引:2  
磷酸铁锂(LiFePO4)由于安全性能好、循环寿命长、原材料来源广泛、无环境污染等优点被公认为是最具发展潜力的锂离子动力与储能电池正极材料。经过10余年的深入研究,LiFePO4已经进入实用化阶段,综述了磷酸铁锂材料近年来在基础和应用研究方面的最新进展。  相似文献   

5.
为掌握锂离子电池在恒功率充放电工况下的运行特性,并探究该充放电方式对电池循环性能的影响,对磷酸铁锂电池、钴酸锂电池和锰酸锂电池进行3 h时率恒流恒压充电/恒流放电和恒功率充放电测试,对比分析了两种工况下电池的容量、能量、效率等性能参数。结果表明在3 h充放电倍率下,恒功率充放电工况对磷酸铁锂电池和锰酸锂电池的循环性能并未产生显著的不良影响。经过100次循环后,两种工况下磷酸铁锂扣式电池均表现出超过90%的容量保持率;商品磷酸铁锂电池容量和能量保持率则均超过99%,能量效率达95%。但是,相比于恒流恒压工况,磷酸铁锂电池在恒功率工况下释放的容量、能量略低。锰酸锂电池在两种工况下的容量和能量性能高度重合,但衰减都比较快,100次循环后的容量保持率仅为81.7%。对于钴酸锂电池,恒功率工况显著加剧了其容量和能量的衰减速度,100次循环后能量保持率仅为55.5%,远低于恒流恒压工况下的75.2%。  相似文献   

6.
锂离子电池磷酸铁锂正极材料的制备及改性研究进展   总被引:3,自引:0,他引:3  
橄榄石型磷酸铁锂(LiFePO4)由于安全性能好、循环寿命长、原材料来源广泛、无环境污染等优点被公认为是最具发展潜力的锂离子动力与储能电池正极材料。综述了近年来磷酸铁锂正极材料在制备和改性方面的最新进展。在此基础上,提出了磷酸铁锂正极材料未来的主要研究和发展方向。  相似文献   

7.
橄榄石型磷酸铁锂(LiFePO4)由于具有良好的优点,受到社会各界的广泛关注。由于磷酸铁锂自身结构存在的一些缺点,因此导致电子传导率低和锂离子扩散系数小,不仅影响放电倍率,还阻碍工业化的应用。该文采用碳热还原法制备Li FePO4/C正极材料,研究不同三价铁源合成磷酸铁锂材料的电化学性能状况,通过XRD、SEM等手段表征所得材料,并通过恒流充放电等测试了解其电化学性能,从而找到一种最佳的低成本三价铁源,优化固相碳热还原工艺。  相似文献   

8.
以氢氧化锂、硫酸亚铁、磷酸、葡萄糖为原料,采用水热合成法制备磷酸铁锂,研究了不同类型表面活性剂对产物形貌以及性能的影响。采用XRD、SEM、激光粒度仪、恒流充放电测试表征材料的性能。结果表明:阳离子表面活性剂和非离子型表面活性剂有利于缩小材料粒径,提高材料电化学性能。其中加入阳离子表面活性剂CTAB得到的LiFePO4材料的粒径最小,约为170nm,0.1C倍率下的放电容量为165.3mA.h/g,5C倍率下电容量仍可以达到130.9mA.h/g,且具有很好的循环性能和倍率性能。  相似文献   

9.
本文以专利数据库CNABS、CNTXT为数据来源,对满足动力型锂离子电池正极材料磷酸铁锂包覆主题相符合的专利文献为数据,研究了包覆材料的种类的分析,研究表明碳物质的包覆仍处于绝对优势状态,其他的包覆类物质的专利申请也呈现逐渐增长的趋势。  相似文献   

10.
磷酸铁锂(LiFePO4,LFP)属于橄榄石型锂过渡金属磷酸盐,因具有突出的优点,如成本较低、安全性高、环境友好、元素储量丰富、晶体结构稳定、工作电压平稳等,而成为目前商业化应用最成功的锂离子电池正极材料之一。然而,LFP稳定的晶体结构也导致了其低的电子导电率(10~(-9)~10~(-10)S·cm~(-1))和锂离子(Li~+)迁移率(10~(-13)~10~(-16)cm~2·s~(-1)),使其电化学性能受到严重限制。因此,克服材料本身缺陷,提升其可逆容量及倍率性能,便成为国内外储能器件领域的热门课题之一。一方面,持续的基础研究使人们对LFP及其类似材料有了更加清晰的认识,为LFP的进一步优化改性提供了理论依据。另一方面,目前LFP的商业化生产主要采用固相法,其电化学性能仍有很大的提升空间,改进生产工艺或开发新的产业化制备技术是学术界和产业界共同关注的重要方向。近几年来,研究者们在LFP的改性优化研究上取得了丰硕成果,LFP的改性优化策略主要有以下几种:(1)结构纳米化;(2)先进碳材料复合;(3)晶面取向工程;(4)原位碳包覆;(5)抑制或消除缺陷;(6)离子掺杂;(7)量子点改性等。实现LFP基复合材料优异电化学性能需结合多种改性策略,单一改性策略难以实现性能突破。由于锂离子(Li~+)在LFP中沿b轴方向具有一维扩散特性,制备具有(010)晶面择优取向的LFP有利于缩短Li+在LFP体相中的传输距离,增加脱嵌位点,提升反应动力学性能。因此,晶面取向工程成为近几年提升LFP性能的重要策略。另外,随着对LFP基础研究的不断深入,在电池充放电过程中Li+的脱嵌、传输、反应机理及材料结构演变等动态过程方面也取得了一系列重要进展。本文基于橄榄石型LFP(Pnma)的晶体结构,系统总结了Li~+的扩散机制、(010)晶面特性及其对材料电化学性能的影响,并从七个方面综述了近几年LFP改性优化的研究进展。最后,指出了LFP未来的主要发展方向及研究思路。  相似文献   

11.
Ti离子掺杂对LiFePO4材料性能的影响   总被引:2,自引:1,他引:1  
采用固相法合成了锂离子电池正极材料LiFePO4.为了提高LiFePO4的电化学性能,用Ti4 对LiFePO4进行掺杂.通过X射线衍射分析及电化学测试,研究了Ti掺杂对材料的结构和电化学性能的影响.以Li3PO4为锂源,(C4H9O)4Ti为掺杂源,合成了单一相Li1-xTixFePO4(x=0.005、0.01、0.02和0.03).实验研究表明,掺入少量的Ti4 ,可以减小晶胞体积,有效地提高了LiFePO4的循环性能和比容量.当(C4H9O)4Ti的掺入量为1 mol%时,在50mA/g的充放电电流下,首次放电比容量为123 mAh/g;经过60次循环后,容量基本上无衰减.  相似文献   

12.
以不同锂盐与柠檬酸铁为原料,采用溶胶-凝胶法制备LiFePO4,并讨论在前躯体中加入表面活性剂对LiFePO4性能的影响.结合XRD、SEM和充放电测试等手段对材料性能进行表征.结果表明,表面活性剂可以抑制杂质相Li4P2O7的出现,得到颗粒尺寸较小的LiFePO4,在0.1C倍率下其首次放电比容量可达123.5mAh/g,循环10次后容量仅衰减2.4%.  相似文献   

13.
钛离子掺杂对LiFePO4结构和性能的影响   总被引:1,自引:0,他引:1  
为提高LiFePO4的充放电性能,用Ti(Ⅳ)对LiFePO4进行掺杂.用电化学方法测量了Li1-xTixFePO4的充放电性能,用X射线衍射和里特沃尔特方法表征了掺杂LiFePO4的晶体结构.固相反应可以制备单相Li1-xTixFePO4(x=0.00、0.01、0.02、0.03、0.05和0.07,摩尔分数),其中Li0.98Ti0.02FePO4具有更好的电化学性能,在80mA/g的充放电电流下,第2次的放电比容量为136.606mAh/g,循环20次后为128.388mAh/g.研究表明,少量钛离子掺杂不仅改变了原子间距和位置、引起晶胞收缩,而且增加了LiFePO4中Fe^3+/Fe^2+共存态的浓度,提高了材料的导电能力,从而能有效地提高LiFePO4的比容量和循环性能.  相似文献   

14.
锂离子电池正极材料LiFePO4的改性研究   总被引:1,自引:0,他引:1  
橄榄石型结构的磷酸铁锂(LiFePO4)有望成为一种安全性高、价格低、电化学性能优良的锂离子电池的正极材料。然而由于自身晶体结构的本征特性,LiFePO4具有室温下电子导电率低、离子传导率差等缺点,这已成为限制其应用的最大障碍。通过导电碳包覆及金属或金属离子掺杂等改性方法提高这种材料的电子导电率已成为锂离子电池材料领域的研究热点之一。在综述了磷酸铁锂改性研究最新进展的基础上,提出了正极材料LiFePO4未来的主要研究发展方向。  相似文献   

15.
两种碳源对橄榄石型正极材料LiFePO4性能的影响   总被引:1,自引:0,他引:1  
采用固相反应法在惰性气体气氛下合成了橄榄石型LiFePO4及LiFePO4/C复合正极材料,采用XRD,SEM以及电化学测试等手段对材料进行了结构表征和性能测试.考察了蔗糖、石墨两种碳源对材料性能的影响.XRD结果表明,两种碳源的添加对LiFePO4的晶体结构没有明显的影响;SEM表明,掺杂后,样品的粒径变小;充放电测试表明,和未掺杂的LiFePO4相比掺杂石墨和掺杂蔗糖的LiFePO4具有更好的电化学性能,放电比容量分别为:138.85mAh·g-1和126.2mAh·g-1,高于纯的LiFePO4正极材料的容量90mAh·g-1.经100次循环后,掺杂蔗糖、掺杂石墨及未掺杂的LiFePO4样品的容量衰减率分别为0.02%,1.2%和47%.  相似文献   

16.
聚苯胺包覆的LiFePO4电化学性能研究   总被引:1,自引:0,他引:1  
采用固相法合成了锂离子电池正极材料LiFePO4.为了改进LiFePO4的高倍率充放电性能,采用原位聚合的方法合成了一系列聚苯胺-LiFePO4(PAn-LiFePO4)复合正极材料.通过扫描电子显微镜(SEM)观察了样品的形貌.交流阻抗测试表明聚苯胺的包覆降低了LiFePO4电极的电化学反应阻抗.充放电测试表明PAnLiFePO4复合材料的放电容量更高,循环性能更好.  相似文献   

17.
共沉淀-焙烧法制备LiFePO4   总被引:4,自引:0,他引:4  
沈湘黔  占云  周建新  景茂祥 《功能材料》2006,37(8):1198-1200,1203
采用共沉淀法合成了无定形磷酸亚铁与磷酸锂的混合前驱体,这种前驱体在700℃下于还原性气氛中保温5.5h制得橄榄石型磷酸铁锂.采用XRD、FTIR、SEM和TG/DSC等手段对前驱体和焙烧产物的成分、结构、形貌及其热分解过程进行了研究.由不同热处理温度及反应时间下的LiFePO4转化率算得磷酸锂与磷酸亚铁在400~700℃下生成磷酸铁锂的反应速率常数和表观反应活化能(26.9kJ/mol).结果表明,Fe3(PO4)2与Li3PO4反应生成LiFePO4的过程主要由Li 、Fe2 在固相介质中的扩散速率所控制.因此,Fe3(PO4)2和Li3PO4的均匀混合有利于降低LiFePO4的焙烧温度和缩短反应时间.  相似文献   

18.
采用溶胶-凝胶法结合固相反应制备了具有立方尖晶石结构的LiMn1-xNixTiO4(x=0、0.1、0.2、0.3)锂离子电池正极材料。通过场发射扫描电镜(FESEM)观察材料的表面形貌, 所制备的材料均呈现出典型的烧结体特征; 用X射线衍射仪(XRD)分析材料的物相变化, Ni替代前后均产生杂相TiO2, 但没有产生与替代元素相关的杂相。通过循环伏安、恒电流充放电等测试研究样品的电化学性能。结果表明: LiMnTiO4有两对氧化还原峰, 分别对应Mn3+/Mn4+、Mn3+/Mn2+的转变, 而Ni替代后出现了额外的氧化还原对, 即Ni3+/Ni4+的转变。LiMn1-xNixTiO4(x=0.1、0.2、0.3)的电化学性能均优于LiMnTiO4, 尤其当Ni替代量为0.1时, LiMn0.9Ni0.1TiO4在30 mA/g电流密度下的首次放电容量为171.6 mAh/g, 48次循环后容量为162.8 mAh/g, 容量保持率为82.7%。对LiMn0.9Ni0.1TiO4进行非原位XRD测试发现, 材料一次循环后结构无明显变化, 不存在立方相与四方相之间的转变。  相似文献   

19.
张亚利  高立军吁霁 《材料导报》2007,21(F11):303-305,312
LiFePO4因具有高的比容量、良好的循环性、环境友好等特点,成为目前最受关注的锂离子电池正极材料。概述了LiFePO4的结构和电化学性能,介绍了LiFePO4主要的几种制备方法,包括固相法、水热法、微波法。同时阐述了提高LiFePO4电化学性能所做的改性研究,并对该材料的发展方向进行了展望。  相似文献   

20.
作为新一代锂离子电池正极材料的磷酸铁锂(LiFePO4)具有众多优点,因而被认为是一种很有开发前途的正极材料,目前已报道的LiFePO4制备方法多种多样.综述了LiFePO4材料在制备方面的研究进展,比较了不同合成方法对材料性能的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号