首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
采用静电纺丝技术制备聚乙烯醇/海藻酸钠复合纳米纤维膜,利用氯化钙乙醇溶液进行交联改性。研究复合纳米纤维制备、交联工艺对材料表面形貌、耐水性、热性能等的影响。结果表明:纳米纤维直径在200~500nm之间,纤维平均直径随海藻酸钠含量的增大而增大,复合纳米纤维结晶度随海藻酸钠含量的增大而降低,热稳定性随海藻酸钠含量的增大而下降。交联改性后复合纳米纤维材料耐水性提高,纤维形貌保持,纤维之间粘结增多,材料不发生熔融相转变,热稳定性下降。  相似文献   

2.
采用溶胶一凝胶法将二氧化硅(SiO2)溶胶加入到聚醋酸乙烯酯(PVAc)的丙酮溶液中形成杂化纺丝液,测试了纺丝液的表面张力、粘度、电导率,再采用高压静电纺丝法制备了PVAC/SiO2杂化纳米纤维膜。结果表明,SiO2的加入改善了纳米纤维膜的形貌特征,膜的断裂强力增大,但断裂伸长率却有所降低,而膜的热稳定性也得到了提高。  相似文献   

3.
陆冰  李兵涛  魏取福 《材料导报》2011,(Z1):113-115
采用溶胶-凝胶法将二氧化硅(SiO2)溶胶加入到聚醋酸乙烯酯(PVAc)的丙酮溶液中形成杂化纺丝液,测试了纺丝液的表面张力、粘度、电导率,再采用高压静电纺丝法制备了PVAc/SiO2杂化纳米纤维膜。结果表明,SiO2的加入改善了纳米纤维膜的形貌特征,膜的断裂强力增大,但断裂伸长率却有所降低,而膜的热稳定性也得到了提高。  相似文献   

4.
利用Genipin对再生丝素蛋白进行交联改性,并通过静电纺丝法制备交联的丝素蛋白纳米纤维膜.利用场发射扫描电镜、红外光谱仪、X射线衍射仪、热重分析仪以及拉力机等对其结构与性能进行表征与测试.结果表明,随着交联剂Genipin质量比的增加,交联度增加,静电纺丝素蛋白纳米纤维平均直径增大,标准偏差增大;Genipin交联对丝素蛋白纳米纤维结晶结构影响不大,但热性能提高;常温条件下,随着Genipin质量比从2%提高至15%,丝素蛋白纳米纤维膜的力学性能逐渐增强,质量比为10%时,其力学性能较好,拉伸强度和断裂应变分别为19.6 MPa和5.9%;随着试验温度从40℃升高到200℃,丝素蛋白纳米纤维膜的拉伸强度和断裂应变先增大然后减小,当试验温度为80℃时,其力学性能较好,拉伸强度和断裂应变分别为41.6 MPa和8.6%.  相似文献   

5.
利用Genipin对再生丝素蛋白进行交联改性, 并通过静电纺丝法制备交联的丝素蛋白纳米纤维膜。利用场发射扫描电镜、 红外光谱仪、 X射线衍射仪、 热重分析仪以及拉力机等对其结构与性能进行表征与测试。结果表明, 随着交联剂Genipin质量比的增加, 交联度增加, 静电纺丝素蛋白纳米纤维平均直径增大, 标准偏差增大;Genipin交联对丝素蛋白纳米纤维结晶结构影响不大, 但热性能提高;常温条件下, 随着Genipin质量比从2%提高至15%, 丝素蛋白纳米纤维膜的力学性能逐渐增强, 质量比为10%时, 其力学性能较好, 拉伸强度和断裂应变分别为19.6 MPa和5.9%;随着试验温度从40 ℃升高到200 ℃, 丝素蛋白纳米纤维膜的拉伸强度和断裂应变先增大然后减小, 当试验温度为80 ℃时, 其力学性能较好, 拉伸强度和断裂应变分别为41.6 MPa和8.6%。  相似文献   

6.
对水溶性的γ-聚谷氨酸(γ-PGA)进行接枝改性,合成了两亲性胆甾醇基γ-PGA衍生物;通过红外光谱(FT-IR)及核磁共振(1H-NMR)对其结构进行了表征和确证;并采用超声探头法制备得胆甾醇基γ-PGA自组装胶束。在中性介质条件下,形成的胶束在透射电镜下观察呈规则球状,平均粒径为(299.6±5.4)nm,粒径的多分散系数(PDI)为0.17。实验表明,两亲性胆甾醇基γ-PGA自组装体的形成是分子内分子间疏水作用力、分子带电情况和分子柔性变化等协同作用的结果,而介质pH是重要的影响因素,其形成的核壳结构可作为疏水药物和大分子药物的载体。  相似文献   

7.
孙晶  王瑞  孙红玉  申妮  徐磊 《化工新型材料》2019,47(4):115-119,124
以聚偏氟乙烯(PVDF)粉末为原料,将N,N-二甲基甲酰胺与丙酮按体积比8∶2配制成含量和黏度可控的纺丝液,用静电纺丝法制备了PVDF超疏水纳米纤维膜。利用扫描电子显微镜和图像分析软件对所制纳米纤维膜的形貌、孔径分布及孔隙率、表面接触角、纯水通量等进行分析,考察了纺丝液含量、施加电压、接收距离、纺丝速度对超疏水纳米纤维膜的影响。结果表明,在纺丝液含量为10%(质量分数)、施加电压为18kV、接收距离为15cm、纺丝速度为1.0mL/h条件下,通过连续静电纺丝制备的超疏水纳米纤维膜具备最优的防水效果。  相似文献   

8.
分别将w(尼龙-6)=10%、12%和14%的甲酸溶液经静电纺丝后得到具有不同纤维直径的纳米纤维膜,模拟自然环境,将其与普通薄膜进行老化性能对比.研究结果表明在相同薄膜厚度的情况下,纳米纤维膜比普通薄膜具有更好的耐老化性能,并且随纳米纤维直径的减小,相应纳米纤维膜的耐老化性能增强.  相似文献   

9.
以聚砜超滤膜(截留分子量10 000)为基膜,壳聚糖乙酸溶液为铸膜液,使用相转化法制备了戊二醛-硫酸混合交联壳聚糖/聚砜复合纳滤膜,并研究了壳聚糖浓度、戊二醛-硫酸混合交联剂等因素对该膜分离效果的影响.在操作压力1.6 MPa、流量30 L/h、20℃条件下,测得纯水通量为12.84 L/(m2.h),对2 000 mg/L的NaCl、MgCl2、Na2SO4和MgSO4的截留率分别为6.6%,94.5%,34%和80.4%,水通量依次为6.93,11.92,6.95和6.73 L/(m2.h);对分子量不低于280的有机物截留率高于90%;对0.01~0.1 mol/L KCl溶液在0.1~0.7 MPa下测定膜的流动电位为60~6 mV/MPa.电解质离子分离机理取决于膜与电解质离子之间的电荷作用.  相似文献   

10.
通过自由基聚合反应制备了可交联磷酰胆碱聚合物(Poly(MPC-co-LMA-co-TSMA),PMLT).将该聚合物溶液涂覆在聚甲基戊烯中空纤维膜(PMPHFM)表面,经交联处理后可形成稳定的PMLT聚合物涂层,得到改性复合材料PMLT/PMPHFM.溶胀度测试表明PMLT聚合物膜具有良好的亲水性能,且溶胀度随着2-...  相似文献   

11.
以含环氧基团三元共聚物纳米纤维为载体,用植酸(PA)为改性剂,得到表面含有磷酸根基团的功能性纤维膜。研究了植酸浓度、反应温度、反应时间对纤维膜改性的影响。采用傅里叶变换红外光谱、热失重分析、扫描电镜、光学接触角测量仪,对纤维膜的结构与表面润湿性进行表征。结果表明,当植酸浓度20%,反应温度70℃,反应时间3h时,改性得到的功能化纤维膜的铅离子吸附容量为60mg/g;改性后纤维膜的形态仍能保持微纳米级网状结构,其直径约为408nm,静态接触角为39.12°,呈现了良好的亲水性能。  相似文献   

12.
以尼龙6(PA6)/聚氧化乙烯(PEO)为原料配备复合纺丝液,通过高压静电纺丝制备出不同原料比例复合纳米纤维毡,再将纳米纤维毡进行水洗处理。应用电子显微镜(SEM)、原子力显微镜(AFM)观察分析纳米纤维毡经水洗处理前后的整体及单根纤维形貌。分析纳米纤维膜水洗前后孔隙率变化,同时通过亚甲基蓝吸附测试说明纳米水洗处理对纳米纤维毡吸附性能的影响。结果表明,PEO含量会对纳米纤维膜形貌、比表面积、孔隙率、吸附性能产生影响,而水洗处理会使纳米纤维的这些性能发生变化。  相似文献   

13.
采用Jones试剂对聚乙二醇(PEG)进行修饰并合成端基为-Si(OEt)3的PEG大分子硅氧烷,将其与TiO2溶胶进行共水解缩合,制得PEG/SiO2-TiO2杂化纺丝液。在杂化纺丝液中加入头孢唑啉钠,经静电纺丝法制备载药杂化纳米纤维膜。对杂化电纺纤维膜的结构与形态进行了表征,并研究了其药物释放性能。红外光谱(FT-IR)研究了PEG大分子硅氧烷合成机理和产物结构;扫描电镜(SEM)照片显示,纳米纤维的平均直径约为115 nm,载药纳米纤维平均直径约为130 nm;紫外可见光(UV-Vis)光谱分析表明,载药纤维的初期释放速度较快,随时间推移释放速率逐渐降低,具有良好的药物缓释性能。  相似文献   

14.
采用静电纺丝技术制备聚乙烯醇/二氧化钛复合纳米纤维膜,利用戊二醛对复合纳米纤维膜进行改性。分析改性前后材料表面形貌、表面化学基团的变化及其耐水性和热性能。结果表明:复合纳米纤维表面粗糙度随二氧化钛含量的增大而增大。改性后纤维形貌保持不变,纤维间出现粘结,材料表面发生羟醛缩合反应,在1600cm~(-1)处出现-C=C红外特征峰,复合纳米纤维膜耐水性显著提高,材料在190℃处的熔融峰消失。  相似文献   

15.
采用静电纺丝技术制备聚乙烯醇/氧化淀粉/二氧化钛复合纳米纤维膜。采用场发射扫描电子显微镜、差示扫描量热仪及热重分析仪研究组分对材料表面形貌、纤维直径、结晶度和热性能的影响。结果表明,复合纳米纤维表面粗糙程度随二氧化钛含量增加而增大,纤维平均直径在183~222 nm之间且随氧化淀粉含量增加而减小,材料结晶度在30.73%~16.78%之间且随氧化淀粉含量增加而下降,热稳定性随氧化淀粉含量增加而增强。  相似文献   

16.
Electrospinning technology has attracted extensive attention in recent decades and is widely used to prepare nanofiber membranes from hundreds of polymers. Polyvinyl formal acetal (PVFA), as a polymer with excellent properties such as high strength and heat resistance, is not reported on the electrospun water treatment membrane. In this paper, the preparation process of electrospun PVFA nanofiber membrane is optimized, and the effect of sodium chloride (NaCl) addition on the physical and mechanical properties and microfiltration performance of nanofiber membrane is also explored. And the hydrophobic PVFA nanofiber filter layer is then combined with a hydrophilic nonwoven support layer to construct a composite micro/nanofiber membrane with a pore-size gradient structure and a hydrophilic/hydrophobic asymmetric structure. Finally, unidirectional water transport and water treatment performance are further investigated. The results show that the tensile breaking strength of the composite membrane can reach up to 37.8 MPa, the retention rate for particles with the size of 0.1–0.3 µm is 99.7%, and the water flux is 513.4 L m−2 h−1 under the hydrostatic pressure. Moreover, it still has a retention of more than 98% after three repeated uses. Therefore, the electrospun PVFA composite membrane has a great potential in microfiltration.  相似文献   

17.
介孔氧化硅是最为典型的介孔材料,其具有比表面积高、孔径均一、易于表面修饰等优异特性,广泛应用于吸附分离、催化、传感以及物质负载与缓释等领域。关于粉体和薄膜形态的介孔氧化硅已有大量报道,但纤维形态,特别是连续纤维形态的介孔氧化硅材料的制备仍然是一项挑战。近年来随着静电纺技术的发展,连续纤维形貌的介孔氧化硅材料的制备取得了重要进展。根据纤维介孔结构的有序度和介孔结构引入方式的不同,对静电纺介孔氧化硅基纳米纤维进行详细的介绍。  相似文献   

18.
在概括前人静电纺成纱方法和原理的基础上,提出了制取平行取向纳米纤维纱的必要性和迫切需求。综述了最新静电纺纳米纤维成纱方法,主要有圆盘加捻卷绕成纱、自聚束成纱、干喷湿法收集成纱、圆盘机械收集成纱、双圆盘电极收集成纱,分析了这些方法的原理和实用性,比较了各种方法成纱的形貌,对纳米纤维成纱方法的研究具有重要的引导意义和参考价值。  相似文献   

19.
采用离子交换法, 即以KOH溶液与钛酸纳米管(H2Ti2O4(OH)2)反应, 制备了钛酸钾纳米纤维. 透射电镜(TEM)和X射线衍射分析(XRD)结果表明, 经过离子交换, 形貌由纳米管变为纳米纤维, 晶体结构亦发生改变. 利用原子吸收分光光度法, 比色法和X射线光电子能谱(XPS)对离子交换产物的Ti, K元素的原子比和化学价态进行分析, 结果表明, 离子交换产物的经验式为: K1.34H0.66Ti2O4(OH)2与H2Ti2O4(OH)2纳米管相比, 钛酸钾纳米纤维的热稳定性较好, 700℃以上的热处理才使其晶型发生改变, 出现单斜型的K2Ti4O9. 高温处理导致钛酸钾纳米纤维的直径增加, 但仍保持较大长径比. 该材料的BET比表面积为104m2·g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号