首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
利用静电纺丝技术制备了左旋聚乳酸/氧化石墨烯(PLLA/GO)复合纳米纤维毡。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、孔隙率测试、傅里叶红外光谱分析(FTIR)以及拉伸测试分别对PLLA/GO纳米纤维的形貌结构、孔隙率及力学性能进行了研究。将小鼠骨髓间充质干细胞(MSCs)种植在TSF/PLLA纳米纤维上,通过荧光显微镜分析和碱性磷酸酶(ALP)测试、SEM观察细胞在材料表面的生长以及矿物沉积情况评价复合纳米纤维的生物学性能。结果表明,与纯的PLLA静电纺纳米纤维支架相比,PLLA/GO复合纳米纤维支架的纤维直径显著减小,孔隙率增大,力学性能明显得到改善,拉伸强度和杨氏模量均高于纯PLLA纳米纤维支架将近3倍,而且能够更好地促进MSCs的粘附、增殖和分化。  相似文献   

2.
利用静电纺丝和模拟体液仿生矿化技术制备了聚乳酸-羟基乙酸共聚物/柞蚕丝素/羟基磷灰石((PLGA/TSF/HA)骨组织工程复合支架。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射测试(XRD)和热重分析(TG)对复合纳米纤维的形貌结构进行了表征。此外,在复合纳米纤维支架材料上接种人骨髓间充质干细胞(hMSCs),通过四甲基偶氮噻唑蓝比色(Four methyl azo thiazole blue colorimetric,MTT)法,观察细胞在材料表面的生长情况评价纳米纤维的生物相容性。结果显示,PLGA/TSF纳米纤维毡具有精细的三维结构,纤维直径分布均匀,表面光滑。矿化后HA颗粒均匀地分布在PLGA/TSF纳米纤维表面,矿物含量约占63%。与PLGA/TSF纳米纤维支架相比,PLGA/TSF/HA纳米纤维支架的亲水性、生物相容性都得到显著提高。  相似文献   

3.
聚乳酸复合纳米纤维创面敷料的制备及性能   总被引:2,自引:0,他引:2  
采用静电纺丝技术制备了聚乳酸(PLLA)纳米纤维毡、壳聚糖/PLLA纳米纤维毡和明胶/PLLA纳米纤维毡。利用扫描电镜(SEM)、图像分析软件等手段研究了纳米纤维微观形貌,并研究各种创面敷料的吸水性、保水性和水蒸汽通透性等性能。结果表明,壳聚糖/PLLA、明胶/PLLA复合纳米纤维毡的吸水性和保水性有显著提高,水蒸汽通透性略有下降,是理想的创面敷料材料。  相似文献   

4.
采用溶胶-凝胶法结合静电纺丝技术制备了聚醋酸乙烯酯(PVAc)/氧化钛(TiO2)杂化纳米纤维.通过使用扫描电子显微镜(SEM)和单纤维拉伸仪对不同条件下制备的杂化纳米纤维表面形貌和力学性能进行了表征和测试,探讨了有机无机杂化纳米纤维力学性能的影响因素.研究发现,随着TiO2溶胶含量的增加,纳米纤维表面珠状物减少,纳米纤维膜的断裂强度增大而断裂伸长率减小;随着滚筒转速的加快,纳米纤维毡的纤维取向有所改善,纳米纤维毡的断裂强度和断裂伸长率都有所增大;随着环境湿度的增加,纳米纤维毡的纤维之间粘结点增多,纳米纤维的断裂伸长率增大,断裂强度先增大后减小.  相似文献   

5.
采用静电纺丝技术成功制备丝素(SF)/聚左旋乳酸(PLLA)复合纳米纤维膜,对其理化性能进行研究。本实验以六氟异丙醇(HFIP)为溶剂,将SF与PLLA按100∶0、70∶30、50∶50、30∶70、0∶100的质量比共混进行电纺,制备的5种材料用戊二醛(GTA)蒸汽交联48h。通过扫描电镜(SEM)、拉伸性能测试、X射线衍射(XRD)、热重分析(TG)和亲水角等方法对其理化性能进行表征。结果显示制备的SF/PLLA复合纳米纤维平均直径在162~680nm之间,并随着PLLA含量的增加而增加;交联后纤维虽有溶胀,但仍然保持了纤维形貌;SF/PLLA复合纳米纤维膜的力学性能、结晶度、热稳定性和疏水性较纯SF明显提高,且随着PLLA含量的增加而增加,有望成为一种新型的组织工程支架材料。  相似文献   

6.
MWNTs/丝素/聚酰胺共混静电纺纳米纤维毡的结构和性能   总被引:2,自引:0,他引:2  
静电纺再生丝素纤雏具有在水中易溶胀、结构稳定性和力学性能差等缺陷.在前期研究聚酰胺6/66对静电纺丝素纤维的结构和性能改进效果的基础上,以多壁碳纳米管(MWNTs)增强静电纺丝素/聚酰胺6/66复合纳米纤维.研究发现,随着MWNTs含量的增加复合纤维毡的颜色由白色变成黑色,纤维直径逐渐减小,并且都在90nm以下.MWNTs的加入,还有效地提高了纤维的结晶度、热稳定性以及纤维毡的拉伸力学性能.  相似文献   

7.
以右旋聚乳酸-聚乙二醇-右旋聚乳酸(PDLA-PEG-PDLA)三嵌段共聚物作为改性剂,通过熔融共混法及熔融纺丝-后牵伸两步法分别制备了左旋聚乳酸(PLLA)/PDLA-PEG-PDLA共混物及其共混纤维。采用差示扫描量热分析、热重分析、毛细管流变仪、扫描电镜、广角X射线衍射及力学性能测试等方法对共混物及其共混纤维的结晶行为、热性能、取向及力学性能等进行了研究。结果表明,熔融温度对PLLA及其共混物的结晶行为有较大的影响。当熔融温度为230℃时,共混物中PDLA-PEG-PDLA含量为10%时,α晶的结晶温度最高,为127℃;另外,共混物具有较好的纺丝性能,相同条件下制备的共混纤维的结晶度和取向度均高于纯PLLA纤维,当嵌段共聚物质量分数为2%时,共混纤维的结晶度及取向度最大,分别为27%和-0.39;嵌段共聚物的加入,对PLLA的热稳定性和力学性能的影响较小。  相似文献   

8.
本文采用静电纺丝法制备了聚乳酸(PLA)纳米纤维毡片,并首次研究了PLA纳米纤维微观结构对材料吸油性能的影响机制。扫描电子显微镜(SEM)表征显示前驱体溶液浓度对PLA静电纺丝纳米纤维直径具有显著影响,较高的浓度导致纳米纤维直径变大,10wt.%的前驱体溶液浓度可获得直径为50~100nm的均匀纳米纤维。接触角测定发现优化后的PLA纳米纤维材料具有超疏水超亲油特性。系统研究了PLA静电纺丝纳米纤维毡片对柴油、润滑油和植物油的吸附性能,发现PLA静电纺丝纳米纤维对柴油、润滑油和植物油的最大吸油倍率分别达到37、116和51g/g。实验模拟发现所制备的PLA纳米纤维材料具有吸油倍率高,吸水率低和可生物降解等特点,可用于吸附水面溢油。  相似文献   

9.
为考察介孔纳米羟基磷灰石(MHA)/左旋聚乳酸(PLLA)复合材料的性能,以十六烷基三甲基溴化铵(CTAB)为模板合成MHA,采用溶液相分离结合粒子沥滤法制备了不同纳米粒子含量的MHA/PLLA多孔支架复合材料,考察了其抗压缩性能和淬断面微观结构。采用溶液浇注法制备了MHA/PLLA复合膜,并对其拉伸性能和拉伸断面微观结构进行了研究。FTIR、XRD、TEM和氮气吸附测试等结果显示:合成的MHA具有典型的晶体结构、介孔结构和较高的比表面积。力学测试结果显示:在发生10%压缩形变时,填料含量为1%、5%和10%的MHA/PLLA多孔支架复合材料的抗压缩强度随填料含量增加而提高,与相应含量的纳米羟基磷灰石(HA)/PLLA多孔支架复合材料相比,分别提高了约37.0%、67.7%和144.7%。在填料含量为5%和10%时,MHA/PLLA复合膜的拉伸强度较HA/PLLA复合膜分别提高约38.7%和46.1%,拉伸模量分别提高约35.4%和14.5%。而且MHA/PLLA复合膜具有更高的断裂伸长率,填料含量为1%、5%和10%时断裂伸长率分别较HA/PLLA复合膜提高约91.3%、79.7%和96.1%。FESEM结果显示:尤其当填料含量较高时,MHA/PLLA多孔支架复合材料或复合膜中填料粒子分布较HA/PLLA中均匀。结果表明:与HA/PLLA复合材料相比,随着MHA含量增加,MHA/PLLA复合材料具有更好的力学性能,MHA在PLLA基体中分布相对更均匀。  相似文献   

10.
基于PLLA(左旋聚乳酸)的优异性能,以六氟异丙醇(HFIP)为溶剂采用静电纺丝法制备质量比为0∶100,30∶70,50∶50,70∶30和100∶0的8%SF/COL/PLLA共混纳米纤维支架,并用浓度为25%戊二醛蒸汽交联48h,通过扫描电镜、X射线衍射、热重分析仪、接触角检测仪对共混材料交联前后的理化性能进行表征。结果表明纳米纤维直径均一,分布均匀;交联后SilkI形成稳定的β折叠,结晶度增强,且交联后材料结晶度明显较交联前增强;热稳定性也随着PLLA浓度的增加愈加稳定。交联后的材料接触角均大于90°表明材料为疏水性,PLLA的加入降低了材料的亲水性能。复合人牙周膜干细胞和材料培养,分析材料的生物学性能,结果证明细胞培养5,7和9d时,细胞在不同比例的支架上粘附、铺展和增殖均良好,但细胞与质量比为30∶70的SF/COL/PLCL纤维膜复合生长最好。  相似文献   

11.
B.-Z. Maytal 《低温学》2006,46(1):21-29
Real gas choked mass flux is calculated for a frictionless stream expanding isentropically until it reaches the speed of sound and without phase changes. The other parameters associated with the choked state are the pressure, density, temperature ratios, and the speed of sound. Departure of the choked mass flux from the ideal gas model is discussed first in absolute terms and then in relative terms, using the Principle of Corresponding States, for gases with boiling points in the low temperature range. Reduced-stagnation pressures are examined up to values of 30 for hydrogen, neon, nitrogen, argon, methane, krypton, xenon, and R-14 and up to 100 for 4He. The corresponding reduced-stagnation temperatures go down to 1.4 and in some cases down to 1.2 for nitrogen and argon. Also discussed are the limiting values of stagnation parameters for which no phase change occurs in the choked state. Compared to the ideal gas, the mass flux may almost double and the critical pressure ratio may decrease by an order of magnitude. The relevance of results is discussed qualitatively and quantitatively for Joule-Thomson cryocooling.  相似文献   

12.
Hafnium is often used to improve the high temperature oxidation resistance of superalloys but not to form carbides for strengthen them against creep. In this work hafnium was added in cobalt-based alloys for verifying that HfC can be obtained in cobalt-based alloys and for characterizing their behavior at a very temperature. Three Co–25Cr–0.25 and 0.50C alloys containing 3.7 and 7.4 Hf to promote HfC carbides, and four Co–25Cr– 0 to 1C alloys for comparison (all contents in wt.%), were cast and exposed at 1200 °C for 50 h in synthetic air. The HfC carbides formed instead chromium carbides during solidification, in eutectic with matrix and as dispersed compact particles. During the stage at 1200 °C the HfC carbides did not significantly evolve, even near the oxidation front despite oxidation early become very fast and generalized. At the same time the chromium carbides present in the Co–Cr–C alloys totally disappeared in the same conditions. Such HfC-alloys potentially bring efficient and sustainable mechanical strengthening at high temperature, but their hot oxidation resistance must be significantly improved.  相似文献   

13.
A novel composite scaffold based on chitosan-collagen/organomontmo-rillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.  相似文献   

14.
This paper describes a method for measuring the mass of cryogenic fluids in on-board rocket propellant tanks or ground storage tanks. Linear approximations to the Clausius-Mossotti relationship serve as the foundation for a capacitance based mass sensor, regardless of fluid density stratification or tank shape. Sensor design considerations are presented along with the experimental results for a capacitance based mass gage tested in liquid nitrogen. This test data is shown to be consistent with theory resulting in a demonstrated mass measurement accuracy of ±0.75% and a deviation from linearity of less than ±0.30% of full scale mass. Theoretical accuracies are also shown to be ±0.73% for hydrogen and ±1.39% for oxygen for a select range of pressures and temperatures.  相似文献   

15.
A new apparatus designed to study, at cryogenic temperatures, thermodynamic equilibria of potentially explosive binary systems such as hydrocarbon-oxygen mixtures is described herein. This equipment has an equilibrium cell which was especially designed to minimize hazards while allowing accurate phase equilibrium measurements. Reliability of results, obtained with this equipment has been verified by working on the nitrogen-propane system, for which data are already available in literature, over a large range of compositions and at various temperatures. Four isothermal curves describing liquid phase compositions at 109.98, 113.77, 119.75 and 125.63 K have been determined. Our experimental data are represented within 2% in compositions and in pressures through the Peng-Robinson equation of state implying Mathias-Copeman alpha function and Huron-Vidal mixing rule. Comparisons to literature allow pointing out: good agreement is observed with Kremer and Knapp data (1983) while the three sets of Poon and Lu data (1974) presenting systematic positive deviation are consequently judged as suspicious.  相似文献   

16.
I. Catarino  D. Martins  G. Bonfait 《Vacuum》2009,83(10):1270-1273
The very low pressure obtained thanks to adsorption phenomenon at low temperature can be used to build cryogenic heat switches, which offer the possibility to make or break thermal contact between two parts of a cryogenic system. The ON (conducting) and OFF (insulating) states of the switch are obtained by varying the gas pressure between two copper blocks separated by a gap of 100 μm. This pressure is controlled by acting upon the temperature of a small sorption pump (activated charcoal) connected to the gap space. For a “high” sorption pump temperature, the gas previously adsorbed in the sorption pump is released to the gap between the two blocks, allowing a good thermal conduction through the gas (ON state). On the opposite, cooling the sorption pump allows a very good vacuum between the copper blocks, which efficiently break the thermal contact (OFF state). Experimental thermal characteristics (Conductance in the ON and OFF state, ON-OFF switching temperature) of such a “Gas Gap Heat Switch” are described using hydrogen or neon as exchange gas and are compared with theoretical calculations.  相似文献   

17.
A number of technological advances required to store and maintain normal-boiling-point and densified cryogenic liquids, including liquid hydrogen, under zero boil-off conditions in-space, for long periods of time, have been developed. These technologies include (1) thermally optimized compact cryogen storage systems that reduce environmental heat leak to the lowest-temperature cryogen, which minimizes cryocooler size and input power, and (2) actively-cooled shields that surround the storage systems and intercept heat leak. The processes and tools used to develop these technologies are discussed. A zero boil-off liquid hydrogen storage system technology demonstrator for validating the actively-cooled shield technology is presented.  相似文献   

18.
This article presents the development of a miniaturized cryogenic fluid circuit for distributed cooling of low-temperature tracking detectors in high-energy physics (HEP). The heart of the circuit is a prototype cryogenic micropump. This volumetric pump is compatible with cooling powers of about 10-100 W, and capable of producing pressure heads of up to around 0.3 MPa. Besides detector and electronics cooling in HEP, potential applications are found in the field of superconductor technology.  相似文献   

19.
Chinh T. Nguyen 《低温学》2010,50(9):529-533
Cooling distribution is a vital technology concerning cryogenic thermal management systems for many future space applications, such as in-space, zero boil-off, long-term propellant storage, cooling infrared sensors at multiple locations or at a distance from the cryocooler, and focal-plane arrays in telescopes. These applications require a cooling distribution technology that is able to efficiently and reliably deliver cooling power (generated by a cryocooler) to remote locations and uniformly distribute it over a large-surface area. On-going efforts by others under this technology development area have not shown any promising results.This paper introduces the concept of using a Resonant Self-Pumped Loop (RSPL) integrated with the proven, highly efficient pulse tube cryocooler. The RSPL and pulse tube cryocooler combination generates cooling power and provides a distributive cooling loop that can be extended long distances, has no moving parts, and is driven by a single linear compressor. The RSPL is fully coupled with the oscillating flow of the pulse tube working fluid and utilizes gas diodes to convert the oscillating flow to one-directional (DC) steady flow that circulates through the cooling loop. The proposed RSPL is extremely simple, lightweight, reliable, and flexible for packaging. There are several requirements for the RSPL to operate efficiently. These requirements will be presented in this paper. Compared to other distributive cooling technologies currently under development, the RSPL technology is unique.  相似文献   

20.
This paper describes helium liquefaction using a commercial cryocooler with 1.5 W cooling power at 4.2 K (Sumitomo model RDK415D with compressor CSW-71D, consuming 6.5 kW electrical power), equipped with heat exchangers for precooling the incoming gas. No additional cooling power of cryoliquids or additional Joule-Thomson stages were utilized. Measurements of the pressure dependence of the liquefaction rate were performed. A maximum value of 83.9 g/h was obtained for 2.25 bar stabilized input pressure. Including the time needed to cool the liquefied helium to 4.2 K at 1 bar after filling the bottle connected to the cold head, and correcting for heat screen influences, this results in a net liquefaction rate of 67.7 g/h. Maintaining a pressure close to 1 bar above the bath during liquefaction, a rate of 55.7 g/h was obtained. The simple design enables many applications of the apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号