首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four soybean oils (SBO) with different fatty acid (FA) compositions were tested for stability during intermittent heating and frying of bread cubes. None of the oils was hydrogenated or contained any additives. Two of the oils were from common commercial varieties. The other two oils were from seed developed in a mutation breeding program and included the line A5, which contained 3.5% linolenate, and the line A6, which contained 20% stearate. Each oil (450 g) was heated to 185 C in a minifryer. Bread cubes were fried at the beginning of heating, and half were stored at −10 C to preserve freshness. The second half was stored at 60 C for 14 days. Heating was continued for 10 hr/day for four days. After 40 hr of heating, an additional 30 g of bread cubes were fried. According to sensory evaluations of the fried bread cubes, peroxide values of oil extracted from the cubes and conjugated diene values of the oils, the A5 and A6 oils were more stable than those from the commercial varieties. Small differences occurred in the flavor and oxidative stability of the cubes fried after 40 hr of heating the oils. Large differences between A5 and A6 and the commercial varieties occurred after storage of bread cubes for 14 days.  相似文献   

2.
To determine effects of expeller pressing/physical refining of soybean oil (SBO) on frying, studies were conducted with expeller-pressed, physically refined, bleached, deodorized SBO (EPSBO); hexane-extracted, refined, bleached, deodorized SBO+TBHQ; and hydrogenated SBO (HSBO). Oils contained citric acid and dimethylpolysiloxane and were used for 35 h of frying french-fried potatoes. Polar compound levels in EPSBO were similar to SBO+TBHQ or HSBO. Flavor quality of potatoes was evaluated by trained, experienced, analytical sensory panelists. In early frying stages, potatoes fried in EPSBO had significantly lower intensities of fishiness than potatoes fried in SBO+TBHQ. Potatoes fried in HSBO were described as “hydrogenated”. Because of differences in flavor intensities and types, potatoes prepared in EPSBO had significantly better quality scores than those fried in SBO+TBHQ or HSBO during the first 15 h of frying. During later stages (25 and 35 h), potatoes fried in EPSBO had significantly better quality scores than potatoes fried in HSBO. Variations in minor oil constituents may partly explain these differences. EPSBO had less total tocopherols and phytosterols than did SBO at 0-time. During frying, TBHQ in SBO and Maillard reaction products in EPSBO probably inhibited tocopherol loss and therefore improved quality.  相似文献   

3.
To determine antioxidative effects of ferulic acid and esterified ferulic acids, these compounds were added to soybean oils (SBO), which were evaluated for oxidative stability and frying stability. Additives included feruloylated MAG and DAG (FMG/FDG), ferulic acid, ethyl ferulate, and TBHQ. After frying tests with potato chips, oils were analyzed for retention of additives and polar compounds. Chips were evaluated for hexanal and rancid odor. After 15 h frying, 71% of FMG/FDG was retained, whereas 55% of ethyl ferulate was retained. TBHQ and ferulic acid levels were 6% and <1%, respectively. Frying oils with ethyl ferulate or TBHQ produced significantly less polar compounds than SBO with no additives. Chips fried in SBO with TBHQ or ferulic acid had significantly lower amounts of hexanal and significantly less rancid odor after 8 d at 60°C than other samples. Oils were also aged at 60°C, and stability was analyzed by PV, hexanal, and rancid odor. Oils with TBHQ or FMG/FDG had significantly less peroxides and hexanal, and a lower rancid odor intensity than the control. FMG/FDG inhibited deterioration at 60°C, whereas ethyl ferulate inhibited the formation of polar compounds in frying oil. Ferulic acid acted as an antioxidant in aged fried food. TBHQ inhibited oil degradation at both temperatures. Presented at the 94th AOCS Meeting & Expo, Kansas City, MO, May 4–7, 2003.  相似文献   

4.
Headspace gas chromatographic analysis of heated soybean oil was investigated as a tool to determine what effect hydrogenation and additives have on the formation of total and individual volatile components. Soybean oil was hydrogenated to varying linolenate (Ln) contents with either nickel (Ni) or copper catalysts. Oils were stabilized with citric acid (CA) or a combination of CA with tertiary butyl hydroquinone (TBHQ) and/or methyl silicone (MS). Volatiles were analyzed with a capillary gas chromatography equipped with a headspace sampler positioned on the injector. Oxidative stability was determined after storage of the oils at 60 C. To study thermal abuse and frying performance of oils, samples were heated for several, hours with prolonged bread frying. The deterioration of the oil was accelerated further by static heating in air within the headspace sampler. All hydrogenated oils produced less total volatiles than the unhydrogenated control oil after prolonged heating and bread frying. Static heating at 190 C for one hr showed that the oil hydrogenated with Ni to 0.4% Ln was the most stable. MS decreased the formation of volatiles in all samples and was particularly effective, in stabilizing the hydrogenated oils. However, MS had little effect on volatiles in the oil hydrogenated to 0.4% with Ni. Unique volatile compounds identified included 2,4-heptadiental in nonhydrogenated soybean oil and 2-nonenal in most hydrogenated oils. On heating, the amount of 2-heptanal decreased significantly in the Ni hydrogenated oils compared to the control. Hexanal, on the other hand, decreased in all hydrogenated oils compared to the control.  相似文献   

5.
The percentages of oleate (18∶1), linoleate (18∶2), and linolenate (18∶3) in blended soybean oils (SBO) were evaluated for their impact on flavor stability and quality in fried foods. Six SBO treatments, including a control (conventional SBO, 21.5% 18∶1) and a high-18∶1 SBO (HO, 79% 18∶1), were tested. In addition, these two oils were mixed in different ratios to make three blended oils containing 36.9, 50.7, and 64.7% 18∶1, abbreviated as 37%OA, 51%OA, and 65%OA, respectively. Also, a low-18∶3 (LL) SBO containing 1.4% 18∶3 and 25.3% 18∶1 was tested. Bread cubes (8.19 cm3) were fried in each of 18 oils (6 treatments ×3 replicates). The fresh and stored bread cubes fried in 79%OA were second to the cubes fried in LL in overall flavor quality, were the weakest in intensity of stale, grassy, fishy, cardboard, and burnt flavors by sensory evaluation, and contained the least amounts of hexanal, hexanal, t-2-heptenal, t,t-2,4-nonadienal, and t,t-2,4-decadienal in volatile analysis. Other treatments were intermediate in these sensory and instrumental evaluations, as related to their 18∶1, 18∶2, and 18∶3 concentrations. In general, the results suggested that the overall flavor stability and eating quality of foods fried in the six oil treatments from the best to the poorest would be: LL≥79%OA, 65%OA, 51%OA, 37%OA, and control.  相似文献   

6.
The efficacy of tertiary butyl hydroquinone (TBHQ) treatment for enhancement of the storage stability of soybean oil has been studied by flavor evaluation and chemical analysis. Soybean oils (I) unhydrogenated (IV=137.7; % linolenate=8.3), (II) hydrogenated with nickel catalyst (IV=109.1; % linolenate=3.3), and (III) hydrogenated with copper-chromium catalyst (IV=112.8, % linolenate=0.4) were each deodorized. In the cooling stage of the deodorizer, each oil was treated with citric acid plus TBHQ. These freshly deodorized oils were compared to separate batches of each oil treated with citric acid alone or with citric acid plus butylated hydroxyanisole and butylated hydroxytoluene. An analytical taste panel performed sensory evaluations by a paired sample test using an intensity rating scale system. The oils were also evaluated after being subjected to accelerated storage tests (4 days and 8 days at 60 C) and a fluorescent light exposure test (4 hr, ambient temperature). Peroxide development during storage was beneficially reduced in oils treated with TBHQ. The flavor stability of the three oils was not enhanced by treatment with TBHQ under any test conditions. Presented at ISF-AOCS Meeting, New York, NY, April 27–May 1, 1980.  相似文献   

7.
Developing low-cost oil refining methods is critical to business that use low-cost extrusion-expelling (E-E) to crush soybeans so they can capture the full value-added potential by marketing finished oils. Normal commodity (CO) and high-oleic (HO) E-E soybean oils were minimum-refined, gas-purged, and evaluated in frying applications. Degummed commodity oil (DCO) and minimum-refined (degummed and deacidified by Magnesol® adsorption) CO and HO oils were gas-purged with N2 for 1 h at 150°C. For DCO, gas purging did not affect PV, oxidative stability index (OSI), FFA, color, and total tocopherol content, but p-anisidine value (AV) increased. For CO, the minimum-refined, gas-purged oil did not differ from degummed, gas-purged oil in terms of p-AV, OSI, tocopherol content, and color. PV and FFA were lower in minimum-refined, gas-purged oil. Minimum-refined, gas-purged HO had much higher OSI, tocopherol, and FFA levels than did minimum-refined, gas-purged CO. The oils were used to fry bread cubes at 185°C. Fried bread cubes were stored under various conditions and evaluated for flavor attributes. These oils were different in toasty/nutty, beany/grassy, and oxidized flavors, as well as overall flavor intensity and desirability. Minimum-refined, gas-purged oils produced fried bread cubes having initial flavor profiles similar to those fried in commercial oil; however, when fresh oils were used they were less stable to oxidation. Longer heating times of the minimum-refined, gas-purged oils produced bread cubes with better oxidative stabilities than those produced with commercial oil.  相似文献   

8.
To determine the frying stability of mid-oleic/ultra low linolenic acid soybean oil (MO/ULLSBO) and the storage stability of food fried in it, tortilla chips were fried in MO/ULLSBO, soybean oil (SBO), hydrogenated SBO (HSBO) and ultra low linolenic SBO (ULLSBO). Intermittent batch frying tests were conducted up to 55 h of frying, and then tortilla chips were aged up to 4 months at 25 °C. Frying oils were analyzed for total polar compounds to determine the frying stability of the oil. Tortilla chips were analyzed for hexanal as an indicator of oxidative deterioration and by sensory analysis using a trained, experienced analytical panel. Results showed no significant differences between the total polar compound levels for MO/ULLSBO and HSBO after 55 h of frying, indicating a similar fry life. However, total polar compound levels for ULLSBO and SBO were significantly higher than for either MO/ULLSBO or HSBO, indicating a lower oil fry life. Hexanal levels in aged tortilla chips fried in SBO were significantly higher than in chips fried in any of the other oils. Tortilla chips fried in MO/ULLSBO and HSBO had significantly lower hexanal levels than in chips fried in ULLSBO. A sensory analysis of rancid flavor intensity showed similar trends to those for hexanal formation. The chips fried in SBO had the highest rancid flavor intensity, with significantly lower hexanal levels in chips fried in HSBO and MO/ULLSBO. Based on these results, MO/ULLSBO not only had a good fry life but also produced oxidatively stable fried food, and therefore would be a healthful alternative to HSBO. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

9.
Oil was hexane-extracted from soybeans that had been modified by hybridization breeding for low-linolenic acid (18∶3) content. Extracted crude oils were processed to finished edible oils by laboratory simulations of commercial oil processing procedures. Oils from three germplasm lines N83-375 (5.5% 18∶3), N89-2009 (2.9% 18∶3) and N85-2176 (1.9% 18∶3) were compared to commercial unhydrogenated soybean salad oil with 6.2% 18∶3 and two hydrogenated soybean frying oils, HSBOI (4.1% 18∶3) and HSBOII (<0.2% 18∶3). Low-18∶3 oils produced by hybridization showed significantly lower room odor intensity scores than the commercial soybean salad oil and the commercial frying oils. The N85-2176 oil with an 18∶3 content below 2.0% showed no fishy odor after 10 h at 190°C and lower burnt and acrid odors after 20 h of use when compared to the commercial oils. Flavor quality of potatoes fried with the N85-2176 oil at 190°C after 10 and 20 h was good, and significantly better at both time periods than that of potatoes fried in the unhydrogenated oil or in the hydrogenated oils. Flavor quality scores of potatoes fried in the N89-2009 oil (2.9% 18∶3) after 10 and 20 h was good and equal to that of potatoes fried in the HSBOI oil (4.1% 18∶3). Fishy flavors, perceived with potatoes fried in the low-18∶3 oils, were significantly lower than those reported for potatoes fried in the unhydrogenated control oil, and the potatoes lacked the hydrogenated flavors of potatoes fried in hydrogenated oils. These results indicate that oils with lowered linolenic acid content produced by hybridization breeding of soybeans are potential alternatives to hydrogenated frying oils.  相似文献   

10.
Frying quality and oxidative stability of high-oleic corn oils   总被引:1,自引:3,他引:1  
To determine the frying stability of corn oils that are genetically modified to contain 65% oleic acid, high-oleic corn oil was evaluated in room odor tests and by total polar compound analysis. Flavor characteristics of french-fried potatoes, prepared in the oil, were also evaluated by trained analytical sensory panelists. In comparison to normal corn oil, hydrogenated corn oil and high-oleic (80 and 90%) sunflower oils, high-oleic corn oil had significantly (P<0.05) lower total polar compound levels after 20 h of oil heating and frying at 190°C than the other oils. Fried-food flavor intensity was significantly higher in the normal corn oil during the early portion of the frying schedule than in any of the high-oleic or hydrogenated oils; however, after 17.5 h of frying, the potatoes fried in normal corn oil had the lowest intensity of fried-food flavor. Corn oil also had the highest intensities of off-odors, including acrid and burnt, in room odor tests. High-oleic corn oil also was evaluated as a salad oil for flavor characteristics and oxidative stability. Results showed that dry-milled high-oleic corn oil had good initial flavor quality and was significantly (P<0.05) more stable than dry-milled normal corn oil after oven storage tests at 60°C, as evaluated by flavor scores and peroxide values. Although the high-oleic corn oil had significantly (P<0.05) better flavor and oxidative stability than corn oil after aging at 60°C, even more pronounced effects were found in high-temperature frying tests, suggesting the advantages of high-oleic corn oil compared to normal or hydrogenated corn oils.  相似文献   

11.
Room odor characteristics produced by heated soybean oil (SBO) and soybean oils hydrogenated with copper (CuHSBO) and nickel (NiHSBO) catalysts were evaluated by a trained panel. Oils were intermittently heated to 190 C for total heating periods of 5, 15 and 30 hr. Oil additives investigated included methyl silicone (MS), tertiary butylhydroquinone (TBHQ) and a polymeric antioxidant in various combinations with citric acid (CA). In room odor tests directly comparing SBO, CuHSBO and NiHSBO, panelists rated the hydrogenated oils as having significantly less odor intensity than the SBO. The combination of CA+MS had the greatest effect in lowering odor intensity of the heated oils, followed by the mixture of CA+MS+TBHQ. The low odor intensity of the MS-treated oils remained fairly constant throughout the tests, while the higher intensity associated with all the other additive-treated oils decreased with increasing heating times, possibly as the result of formation of more volatile decomposition products in the initial heating stages. Methyl silicone had the strongest effect of any additive in decreasing objectionable room odors in the oils. Partially hydrogenated SBO treated with up to 5 ppm of MS produced cooking oils with low room odor intensity and low color development during prolonged heating.  相似文献   

12.
Pilot plant-processed samples of soybean and canola (lowerucic acid rapeseed) oil with fatty acid compositions modified by mutation breeding and/or hydrogenation were evaluated for frying stability. Linolenic acid contents were 6.2% for standard soybean oil, 3.7% for low-linolenic soybean oil and 0.4% for the hydrogenated low-linolenic soybean oil. The linolenic acid contents were 10.1% for standard canola oil, 1.7% for canola modified by breeding and 0.8% and 0.6% for oils modified by breeding and hydrogenation. All modified oils had significantly (P<0.05) less room odor intensity after initial heating tests at 190°C than the standard oils, as judged by a sensory panel. Panelists also judged standard oils to have significantly higher intensities for fishy, burnt, rubbery, smoky and acrid odors than the modified oils. Free fatty acids, polar compounds and foam heights during frying were significantly (P<0.05) less in the low-linolenic soy and canola oils than the corresponding unmodified oils after 5 h of frying. The flavor quality of french-fried potatoes was significantly (P<0.05) better for potatoes fried in modified oils than those fried in standard oils. The potatoes fried in standard canola oil were described by the sensory panel as fishy.  相似文献   

13.
One canola oil and six soybean oils with different fatty acid compositions were heated intermittently, and bread cubes were fried in them to determine the stability of the oils. Two of the soybean oils were commercial varieties Hardin and BSR 101. The other soybean oils were from experimental lines developed at Iowa State University, and included A17 with 1.5% linolenate (18:3) and 15.1% palmitate (16:0), A16 with 1.9% 18:3 and 10.6% 16:0, A87-191039 with 1.8% 18:3 and 29.1% oleate (18:1) and A6 with 27.7% stearate (18:0). The soybean seeds were cold-pressed and crude canola oil was obtained without additives. Oils were refined, bleached and deodorized under laboratory conditions with additions. Each oil (300 mL) was heated to 180 ± 5°C in a minifryer. Bread cubes were fried at the beginning of heating, and half of the cubes were used for analyses. The second half was analyzed after storage at 60°C for seven days. Heating of the oils was continued for 20 h, cooled for 10 h, and then reheated for another 20 h, after which additional bread cubes were fried and analyzed. Results of sensory evaluation of the fried cubes, the peroxide values (PV) of oils extracted from the cubes and the conjugated dienoic acid values of the oils showed that the A17, A16, A87-191039 and A6 oils had better stabilities than did Hardin, BSR 101 and canola oils. The initial 18:3 contents of oils predicted their oxidative and flavor stabilities under heating and frying conditions (for PVvs. 18:3, r=0.89,P=0.008; for flavor qualityvs. 18:3, r=−0.93,P=0.002; for flavor intensityvs. 18:3, r=−0.91,P=0.004).  相似文献   

14.
Soybean oil was partially hydrogenated in a continuous system with copper and nickel catalysts. The hydrogenated products were evaluated for flavor and oxidative stability. Processing conditions were varied to produce oils of linolenate contents between 0.4 and 2.7%, as follows: oil flow, 0.6–2.2 liters/hr; reaction temperature, 180–220 C; hydrogen pressure, 100–525 psig, and catalyst concentration, 0.5–1% copper catalyst or 0.1% nickel catalyst.Trans unsaturation varied from 8 to 20% with copper catalyst and from 15.0 to 27% with nickel catalyst. Linolenate selectivity was 9 with copper catalyst and 2 with nickel catalyst. Flavor evaluation of finished oils containing 0.01% citric acid (CA), appraised initially and after accelerated storage at 60 C, showed no significant difference between hydrogenated oils and nonhydrogenated oil. However, peroxide values and oxidative stability showed that hydrogenated oils were more stable than the unhydrogenated oil. CA+TBHQ (tertiary butylhydroquinone) significantly improved the oxidative stability of test oils over oils with CA only, but flavor scores showed no improvement. Dimethylpolysiloxane (MS) had no effect on either flavor or oxidative stability of the oils.  相似文献   

15.
A methanolic extract of Noble oat (Avena sativa L.) was tested for its antipolymerization activity in soybean and cottonseed oils heated to 180°C for 10 h per day for 10 d and for its carry-through properties in fried bread cubes. The soybean and cottonseed oils containing 0.005 or 0.007% oat extract (based on total phenolic content) formed significantly lesser amounts of polar compounds with high molecular weight than did the oils containing 0.02% tertiary butyl hydroquinone (TBHQ), 1 ppm dimethylpolysiloxane (DMS) and oils containing no additives (control) as measured by high-performance size-exclusion chromatography. Fatty acid composition, also monitored, showed that oils with either level of oat extract maintained a significantly higher linoleic-to-palmitic acid ratio (18∶2/16∶0) than did the other treatments. Oil extracted from bread cubes fried (180°C) in oils containing TBHQ and oat extract and then stored at 60°C in the dark for up to 14 d had significantly lower (P≤0.05) peroxide values and higher (P≤0.05) 18∶2/16∶0 ratios than did oil extracted from cubes fried in oil containing DMS and in the control oil.  相似文献   

16.
Soybeans produced by induced mutation breeding and hybridization were cracked, flaked and hexane-extracted, and the recovered crude oils were processed to finished edible oils by laboratory simulations of commercial oil-processing procedures. Three lines yielded oils containing 1.7, 1.9 and 2.5% linolenic acid. These low-linolenic acid oils were evaluated along with oil extracted from the cultivar Hardin, grown at the same time and location, and they were processed at the same time. The oil from Hardin contained 6.5% linolenic acid. Low-linolenic acid oils showed improved flavor stability in accelerated storage tests after 8 d in the dark at 60°C and after 8h at 7500 lux at 30°C, conditions generally considered in stress testing. Room odor testing indicated that the low-linolenic oils showed significantly lower fishy odor after 1 h at 190°C and lower acrid/pungent odor after 5 h. Potatoes were fried in the oils at 190°C after 5, 10 and 15 h of use. Overall flavor quality of the potatoes fried in the low-linolenic oils was good and significantly better after all time periods than that of potatoes fried in the standard oil. No fishy flavors were perceived with potatoes fried in the low-linolenic oils. Total volatile and polar compound content of all heated oils increased with frying hours, with no significant differences observed. After 15 h of frying, the free fatty acid content in all oils remained below 0.3%. Lowering the linolenic acid content of soybean oil by breeding was particularly beneficial for improved oil quality during cooking and frying. Flavor quality of fried foods was enhanced with these low-linolenic acid oils.  相似文献   

17.
The objective of this work was to study the frying stability of soybean oil (SBO) with reduced linoleate (18∶2) and linolenate (18∶3) and elevated oleate (18∶1) contents. High-oleate SBO [HO SBO, 79% oleic acid (OA)] and a control (conventional SBO, 21.5% OA) were tested as is, as well as blended in different ratios to make three blended oils containing 36.9, 50.7, and 64.7% OA, abbreviated as 37%OA, 51%OA, and 65%OA, respectively. In addition, a low-linolenate (LL) SBO containing 1.4% 18∶3 and 25.3% 18∶1 was tested. Bread cubes (8.19 cm3) were fried in each of 18 oils (6 treatments×3 replicates). We hypothesized that stability indicators would be indirectly related to the total 18∶2 plus 18∶3 percentages and/or the calculated oxidizability. In general, the results were fairly predictable based on total 18∶2 and 18∶3 concentrations. The overall frying stability of the six oil treatments, from the best to the poorest, was: 79%OA, 65%OA, 51%OA, LL≥37%OA, and the control, with respective total compositions for 18∶2 plus 18∶3 of 10.3, 23.6, 36.3, 59.6, 48.9, and 62.8%. The greatly reduced concentration of 18∶3 in the LL SBO made it more stable than the 37%OA, even though the combined composition of 18∶2 and 18∶3 of LL was greater than that of the 37%OA. Blending conventional SBO with HO SBO had a profound effect on the oxidative stability index and color of the blended oils, but the values were not linearly predictable by the percentage of control in the blended oil. Other stability indices, including calculated oxidizability, calculated iodine value, conjugated dienoic acid value, and viscosity, changed in linear response to an increased proportion of the control in the blends.  相似文献   

18.
The use of copper catalyst to reduce selectively the linolenate in soybean oil improves its flavor stability. As previously shown, the copper must be removed or properly inactivated to obtain an oil of high initial quality. In oven and heat tests, odor and flavor development in the hydrogenated soybean oil samples correlate surprisingly well with actual levels of linolenate, but there were some differences in overall responses among cottonseed oil, copper-reduced (0.0% linolenate) and nickel-reduced (3.0% linolenate) soybean oils. The taste panel generally scored the last three oils in the following order: cottonseed oil, copper-reduced and nickel-reduced soybean oil. One of 10 papers to be published from the Symposium “Hydrogenation”. presented at the AOCS Meeting, New Orleans, April 1970. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

19.
Soybean oils were hydrogenated either electrochemically with Pd at 50 or 60°C to iodine values (IV) of 104 and 90 or commercially with Ni to iodine values of 94 and 68. To determine the composition and sensory characteristics, oils were evaluated for triacylglycerol (TAG) structure, stereospecific analysis, fatty acids, solid fat index, and odor attributes in room odor tests. Trans fatty acid contents were 17 and 43.5% for the commercially hydrogenated oils and 9.8% for both electrochemically hydrogenated products. Compositional analysis of the oils showed higher levels of stearic and linoleic acids in the electrochemically hydrogenated oils and higher oleic acid levels in the chemically hydrogenated products. TAG analysis confirmed these findings. Monoenes were the predominant species in the commercial oils, whereas dienes and saturates were predominant components of the electrochemically processed samples. Free fatty acid values and peroxide values were low in electrochemically hydrogenated oils, indicating no problems from hydrolysis or oxidation during hydrogenation. The solid fat index profile of a 15∶85 blend of electrochemically hydrogenated soybean oil (IV=90) with a liquid soybean oil was equivalent to that of a commercial stick margarine. In room odor evaluations of oils heated at frying temperature (190°C), chemically hydrogenated soybean oils showed strong intensities of an undesirable characteristic hydrogenation aroma (waxy, sweet, flowery, fruity, and/or crayon-like odors). However, the electrochemically hydrogenated samples showed only weak intensities of this odor, indicating that the hydrogenation aroma/flavor would be much less detectable in foods fried in the electrochemically hydrogenated soybean oils than in chemically hydrogenated soybean oils. Electrochemical hydrogenation produced deodorized oils with lower levels of trans fatty acids, compositions suitable for margarines, and lower intensity levels of off-odors, including hydrogenation aroma, when heated to 190°C than did commercially hydrogenated oil.  相似文献   

20.
The effects of canola, corn, partially hydrogenated soy (PHS), partially hydrogenated canola (PHC), and low-linolenate canola (LLC) oils on sensory and chemical attributes of tortilla chips were determined initially, after Schaal storage for 8 and 16 d (S8 and S16), and after practical storage for 16 and 24 wk (P16 and P24). Fresh chips were similar to each other in characteristic and off-odors/flavors, except that PHC chips had the lowest characteristic and highest off-odor/flavor. All S8 chips had similar lower (P<0.001) characteristic and greater off-odor/flavor scores than hidden reference chips, but PHC chips had a more intense off-odor than did LLC chips. After S16, canola chips had the lowest (P<0.001) characteristic and highest off-odor/flavor; all other chips were similar. At P16, canola, PHC, and LLC chips had slightly higher (P<0.001) characteristic odor/flavor scores than other chips. After P16 and P24, all stored tortilla chips had lower characteristic odor/flavor scores than hidden reference chips. Rancid, painty, buttery odor/flavor, and bitter flavor notes were detected in Schaal and practically stored chips. Stored chips from all oils were similar in color and crispness. The peroxide value and thep-anisidine value for oils extracted from Schaal-stored chips tended to support panelist data; results from similar analyses of practically stored chips did not. Peroxide values andp-anisidine values for stored used frying oils and the corresponding sensory data for stored chips generally did not agree. Results indicate considerable potential for increasing use of canola oil products for frying tortilla chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号