首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial response continuous phase modulation (CPM) schemes have found wide acceptance because of their compact spectra and comparable performance with other traditional modulation schemes. Although optimum receivers are complex, simple suboptimum receivers are found to yield very good performance in special cases. Performance of such modulation schemes is of interest in a multiple user environment where adjacent channels are spaced closely to improve the system capacity. This paper presents the performance of partial response CPM in the presence of adjacent channel interference and Gaussian noise. The meansquare crosstalk in CPM systems employing MSK-type receivers is formulated. Based on this formulation, a number of modulation schemes employing different receiver filters are analyzed for their ACI rejection. Comparison of results proves that receiver filters, in addition to the spectral occupancy of the signal, play an important role in deciding the crosstalk. The error performance of various schemes evaluated using simulation technique is compared, and it is found that in the presence of adjacent channel interference, certain schemes perform better than minimum shift keying (MSK). The results of the simulation further prove the inadequacy of Gaussian assumption for the adjacent channel interference. It is seen that judicious choice of modulation scheme and receiver filter can result in better spectrum utilization.  相似文献   

2.
Several soft-decision receiver structures are proposed for coded direct-sequence differential-phase-shift-keyed (DPSK) spread spectrum systems operating over pulse-jammed channels. The performance of the maximum-likelihood soft-decision receivers and a number of suboptimal soft decision receivers is considered. Soft-decision receivers require channel side information for satisfactory performance in the presence of pulse jamming. Two techniques are investigated for generating channel side information to mitigate the effects of pulse jamming  相似文献   

3.
We propose an improved variational Bayesian (VB) receiver for orthogonal frequency-division multiplexing (OFDM) systems over frequency-selective block-fading channels. Conventional VB receivers provide distribution-estimates for the channel and information symbols iteratively and jointly. The proposed scheme is different from conventional VB inference in that the VB iterative receiver also exploits the hard channel estimate extracted from previous iterations to update the channel and symbol distributions. In this way, we reduce the impact of channel uncertainty on the decoder performance by means of a modified formulation of the VB formalism. The adequacy of the proposed approach compared to classically used VB receivers is demonstrated by simulations.  相似文献   

4.
The error rates and sensitivity penalties for multichannel coherent optical communications systems are evaluated for amplitude-shift keying (ASK), phase-shift keying (PSK), and frequency-shift keying (FSK) modulation, taking into account adjacent channel interference. Both time-domain and frequency-domain analysis are used, the latter being based on a Gaussian approximation. Both techniques yield similar results for sensitivity penalties below 1 dB. For FSK systems, larger values of the modulation index Δ do not necessarily lead to larger channel spacings. ASK and PSK systems both require larger channel spacings than FSK systems with Δ=1. The study was conducted for sources with linewidths narrow enough so that phase noise does not degrade the performance of receivers with matched filter demodulators  相似文献   

5.
Two novel receivers for transmitted-reference ultrawide bandwidth wireless systems are proposed. The new receivers are derived by using iterative algorithms to implement the channel template estimators employed in previous receivers. While the new receiver structures are simple, simulation results confirm their superiority over previous receivers. The performances of the new receivers can be further improved by optimizing the energy allocation between reference symbols and data symbols within one data packet and by optimizing the number of samples used in correlation. Numerical examples show that the optimization can provide performance gains of up to 4 dB in some cases.  相似文献   

6.
Fast fading used in this paper refers to multiple-input-multiple-output (MIMO) channels with channel gains changing from sample to sample, even within a block symbol. The impact of spatially correlated and sample-to-sample variant (SCSSV) fading channels on the design and error performance of noncoherent receivers is not yet clear in the literature. In this paper, we derive optimal and suboptimal noncoherent receivers for operating on SCSSV MIMO fading channels. The joint effect of spatial correlation and sample-to-sample variation of channel gains on various receivers in Rayleigh and Rician fading is investigated by the derivation of their pairwise error performance. Numerical and simulation results are also presented to illustrate the theory and to compare the performance of the optimal and suboptimal receivers.  相似文献   

7.
The maximum-likelihood sequence estimator (MLSE) for continuous phase modulation (CPM) signals in an additive white Gaussian noise (AWGN) channel is a very efficient method of detection. This paper describes an extension of a relatively simple crosstalk approach for the performance analysis of linear quadrature receivers with cochannel interference (CCI) and adjacent channel interference (ACI) present to the MLSE receiver. Many CPM signals are analyzed, including those using new baseband modulating pulses. One of the new schemes allows an ACI signal to be 62 dB greater than the desired user signal at a frequency separation of one-and-a-half times the bit rate, with just a 2-dB degradation in required Eb/N0  相似文献   

8.
A digital receiver architecture for short-range communications systems like Bluetooth is presented. The architecture is tailored to a highly integrated Bluetooth single-chip integrated circuit (IC) and can easily be adapted to other communications systems using a Gaussian frequency-shift keying (GFSK ) modulation scheme. The single-chip IC integrates the complete digital baseband and radio frequency (RF) functionality on a single die and is realized in a 0.25-mum complementary metal-oxide-semiconductor (CMOS) technology targeted for cost efficiency. The superior performance of this digital receiver architecture compared to the state-of-the-art short-range communications receivers is shown. Simulation and measurement results are presented showing a receiver sensitivity of 87 dBm and excellent co-channel and adjacent channel interference performance.  相似文献   

9.
Diversity reception over generalized-K (KG) fading channels   总被引:2,自引:0,他引:2  
A detailed performance analysis for the most important diversity receivers operating over a composite fading channel modeled by the generalized-K (Kg) distribution is presented. The Kg distribution has been recently considered as a generic and versatile distribution for the accurate modeling of a great variety of short term fading in conjunction with long term fading (shadowing) channel conditions. For this relatively new composite fading model, expressions for important statistical metrics of maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC) and switch and stay combining (SSC) diversity receivers are derived. Using these expressions and by considering independent but not necessarily identical distributed fading channel conditions, performance criteria, such as average output signal-to-noise ratio, amount of fading and outage probability are obtained in closed form. Moreover, following the moments generating function (MGF) based approach for MRC and SSC receivers, and the Pade approximants method for SC and EGC receivers, the average bit error probability is studied. The proposed mathematical analysis is complemented by various performance evaluation results which demonstrate the accuracy of the theoretical approach.  相似文献   

10.
We consider joint channel estimation and data detection in uplink asynchronous code-division multiple-access systems employing aperiodic (long) spreading sequences in the presence of unknown multipath fading. Since maximum-likelihood (ML) sequence estimation is too complex to perform, multiuser receivers are proposed based on the sequential expectation-maximization (EM) algorithm. With the prior knowledge of only the signature waveforms, the delays and the second-order statistics of the fading channel, the receivers sequentially estimate the channel using the sequential EM algorithm. Moreover, the snapshot estimates of each path are tracked by linear minimum mean-squared error filters. The user data are detected by a ML sequence detector, given the channel estimates. The proposed receivers that use the exact expressions have a computational complexity O(2/sup K/) per bit, where K is the number of users. Using the EM algorithm, we derive low-complexity approximations which have a computational complexity of O(K/sup 2/) per bit. Simulation results demonstrate that the proposed receivers offer substantial performance gains over conventional pilot-symbol-assisted techniques and achieve a performance close to the known channel bounds. Furthermore, the proposed receivers even outperform the single-user RAKE receiver with Nyquist pilot-insertion rate in a single-user environment.  相似文献   

11.
In this paper, end-to-end average bit error rate (ABER) of a multi-hop decode-and-forward relay system is evaluated using ultra-wideband transmitted reference (TR) receiver over a multi-path fading channel. Distribution of individual hop signal to noise ratio (SNR) is approximated by a log-normal distribution and corresponding ABER is evaluated by Gauss-Hermite Quadrature rule. These individual hop ABERs are then used to find the end-to-end ABER performance analytically which is faster than the simulation method available in the literatures. Performances of three variants of non-coherent TR receivers: simple transmitted reference, average transmitted reference and differential transmitted reference (DTR) receivers are compared assuming same total transmit power for a fixed end-to-end distance in line-of-sight (LOS) and non line-of-sight (NLOS) channel model. It is observed that the end-to-end ABER performance using DTR receivers is the best and multi-hop relaying is also most effective using these receivers to improve the performance. It is also found that the laws of diminishing returns hold for performance gain in average transmit SNR per bit at a particular ABER in LOS channel i.e. performance improvement in terms of transmit SNR is not equal as the number of hop increases. It decreases with increase in hop number but the reverse trend can be found in NLOS channel.  相似文献   

12.
Ultra wideband (UWB) communication is a very promising candidate for the use in wireless body area networks (BAN). The high UWB peak data rate allows for medium average data rates in combination with a very low duty cycle, which is the key for a very low power consumption. Devices in a wireless BAN require low complexity. Hence, mainly non-coherent receivers such as energy detector and transmitted-reference receiver are suited. In this paper, the symbol-wise maximum-likelihood (ML) detectors for pulse position modulation (PPM) and transmitted reference pulse amplitude modulation (TR PAM) are derived assuming partial channel state information (CSI) at the receiver. Additionally, also the ML detectors for a combination of PPM and TR PAM are presented. The performance of the derived receiver structures is evaluated using a novel BAN channel model not distinguishing line-of-sight and non line-of-sight situations. This simple channel model is based on 1100 channel measurements in the frequency range between 2 and 8 GHz, which were measured in an anechoic chamber. Using the BAN channel model, performance of the derived receiver structures is evaluated showing that the knowledge of the average power delay profile (APDP) at the receiver improves performance substantially. Requiring only slightly more complexity such receivers are a well suited alternative to non-coherent receivers for the use in a BAN.  相似文献   

13.
A linear multiuser receiver for a particular user in a code-division multiple-access (CDMA) network gains potential benefits from knowledge of the channels of all users in the system. In fast multipath fading environments we cannot assume that the channel estimates are perfect and the inevitable channel estimation errors will limit this potential gain. We study the impact of channel estimation errors on the performance of linear multiuser receivers, as well as the channel estimation problem itself. Of particular interest are the scalability properties of the channel and data estimation algorithms: what happens to the performance as the system bandwidth and the number of users (and hence channels to estimate) grows? Our main results involve asymptotic expressions for the signal-to-interference ratio of linear multiuser receivers in the limit of large processing gain, with the number of users divided by the processing gain held constant. We employ a random model for the spreading sequences and the limiting signal-to-interference ratio expressions are independent of the actual signature sequences, depending only on the system loading and the channel statistics: background noise power, energy profile of resolvable multipaths, and channel coherence time. The effect of channel uncertainty on the performance of multiuser receivers is succinctly captured by the notion of effective interference  相似文献   

14.
Previously, we proposed a differential space-code modulation (DSCM) scheme that integrates the strength of differential space-time coding and spreading to achieve interference suppression and resistance to time-varying channel fading in single-user environments. In this paper, we consider the problem of multiuser receiver design for code-division multiple-access (CDMA) systems that utilize DSCM for transmission. In particular, we propose two differential receivers for such systems. These differential receivers do not require the channel state information (CSI) for detection and, still, are resistant to multiuser interference (MUI) and time-varying channel fading. We also propose a coherent receiver that requires only the CSI of the desired user for detection. The coherent receiver yields improved performance over the differential receivers when reliable channel estimates are available (e.g., in slowly fading channels). The proposed differential/coherent receivers are decorrelative schemes that decouple the detection of different users. Both long and short spreading codes can be employed in these schemes. Numerical examples are presented to demonstrate the effectiveness of the proposed receivers.  相似文献   

15.
Blind adaptive minimum mean-squared errors (MMSE) receivers for multiuser direct-sequence code-division multiple access (DS-CDMA) systems that assume knowledge of the steering vector, i.e., the cross-correlation between the desired output and the input signal, are known for their robustness against channel fading as they do not attempt to explicitly track the channel of the user of interest. However, these receivers often have higher excess mean squared error and, hence, poorer performance than training-sequence based adaptive MMSE receivers. In this paper, an improved correlation matrix estimation scheme for blind adaptive MMSE receivers is provided. The new scheme takes advantage of the fact that the desired linear receiver can be expressed as a function of the interference correlation matrix only, rather than the total data correlation matrix. A theoretical analysis is performed for the flat fading case which predicts that the new estimation scheme will result in significant performance improvement. Blind adaptive MMSE receivers with the new estimation scheme appear to achieve performance comparable to the training-sequence based adaptive MMSE receivers. Detailed computer simulations for the fast multipath fading environment verify that the proposed scheme yields strong performance gains over previous methods  相似文献   

16.
In this paper, we present a unified mathematical framework to analyze the bit-error rate (BER) performance of general linear coherent multiuser receivers with diversity reception and imperfect channel estimation for doubly selective Rician-fading asynchronous code-division multiple-access channels. BERs of linear receivers with channel state information and data-aided channel estimation are analyzed, and both exact and low-complexity approximate BER evaluation formulas are presented. Furthermore, by using a Markov chain steady-state analysis, a tight BER approximation for receivers with decision-directed channel estimation is proposed. Numerical and simulation results verify the accuracy of the proposed BER evaluation methods.  相似文献   

17.
Impulse radio ultra wide band (UWB) communications require robust receivers; typically Rake receivers are required to capture a large number of resolvable paths, (even hundred of paths), so large number of correlators are needed; otherwise, adaptive receivers use complex filters and channel estimation algorithms. Therefore, traditional Impulse radio receivers demand non-practical implementation structures. In this paper we propose a novel correlation-adaptive receiver structure with low complexity for indoor high speed ultra wide band systems. This novel structure combines correlation characteristics from Rake receivers with recursive filters from adaptive receivers. The receiver includes a low complexity recursive channel estimation filter capable of estimating hundreds of channel impulse responses, and a single filter-correlation filter used for coherent bit demodulation. Furthermore, we derive by simulations the bit error rate for high density multipath environments for several impulse radio modulations like TH-PPM, DS-BPSK and TH-BPSK and we compare the performance of the proposed structure with typical Rake receivers.  相似文献   

18.
Polarization mode dispersion (PMD) has become one of the major limiting factors for high‐bit‐rate optical transmission systems. This paper evaluates the performance of dense wavelength division multiplexed (DWDM) system with PMD at 80 Gb/s in the presence of Kerr‐nonlinear effects. Orthogonally modulated signals have been investigated and compared for tolerance against PMD in a DWDM transmission system with direct detection receivers. The optimized combinations of orthogonal polarization (OP) with carrier‐suppressed return‐to‐zero (CSRZ) and CSRZ differential‐phase‐shift‐keying signals are shown to improve PMD tolerance over high bit rates and long transmission lengths. Improved performance greater than 4 dB is observed for CSRZ modulated signal with OP because of less channel cross talk and reduced power transfer between adjacent bits over different PMD values. The numerical results demonstrate that our proposed orthogonally modulated signals perform better with lesser complex direct detection receivers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
By employing spatial multiplexing, multiple-input multiple-output (MIMO) wireless antenna systems provide increases in capacity without the need for additional spectrum or power. Zero-forcing (ZF) detection is a simple and effective technique for retrieving multiple transmitted data streams at the receiver. However the detection requires knowledge of the channel state information (CSI) and in practice accurate CSI may not be available. In this letter, we investigate the effect of channel estimation error on the performance of MIMO ZF receivers in uncorrelated Rayleigh flat fading channels. By modeling the estimation error as independent complex Gaussian random variables, tight approximations for both the post-processing SNR distribution and bit error rate (BER) for MIMO ZF receivers with M-QAM and M-PSK modulated signals are derived in closed-form. Numerical results demonstrate the tightness of our analysis  相似文献   

20.
In this paper, error probability analyses are performed for a binary frequency-shift-keying (BFSK) system employingLhop/bit frequency-hopping (FH) spread-spectrum waveforms transmitted over a partial-band Gaussian noise jamming channel. The performance results for two types of square-law nonlinear combining soft decision receivers under worst-case partial-band jamming are presented. The receivers employ, prior to combining, nonlinear weighting strategies of 1) adaptive gain control and 2) soft limiting (clipping) of the detector output of each channel of the dehopped waveform. Both thermal noise and jamming are included in the analyses. It is shown in the paper that a diversity gain for error rate improvement is realizable for nonlinear combining receivers provided that the noncoherent combining loss is less dominant than the jamming power reduction realized by the weighting strategy. Performance comparisons between linear and nonlinear combining receivers are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号