首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GH loop of VP1 of the foot-and-mouth disease virus capsid is important because it is a major antigenic site and an integrin recognition site. The GH loop is disordered in all X-ray structures of the capsid except for serotype O under reduced conditions in which the loop lies on the capsid surface. Although the structure of the capsid–integrin complex has not yet been determined, the GH loop is known to protrude from the capsid surface when the capsid is bound with an antigen-binding fragment (Fab). To clarify the structure and dynamics of the GH loop under natural unreduced conditions before binding to integrins or Fab fragments, we performed molecular dynamics simulation of 16.3 ns long under rotational symmetry boundary conditions for the capsid of serotype O using the X-ray structure of the reduced capsid for the initial coordinates. When the disulfide bond at the base of the GH loop was formed by the molecular mutation method, the loop protruded into the surrounding water, as reported for Fab–capsid complexes, and fluctuated like a tentacle. After equilibration, the GH loop overlapped the surface of the capsid but continued to fluctuate, being directed toward a 2-fold axis. The conformational change of the GH loop after formation of the disulfide bond was explained by a model of elastic tube. The side chains of arginine and aspartic acid of the integrin recognition residues (RGD tripeptide) extended in opposite directions, and the residues on the C-terminal side of the RGD tripeptide formed a hydrophobic cluster in close proximity of the arginine residue of the tripeptide.  相似文献   

2.
蛋白质二级结构预测方法研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为提高蛋白质二级结构预测精度,提出一种新的网络模型和编码方法。首先利用基因表达式编程(GEP)的全局搜索能力同时进化设计神经网络的结构和连接权;其次,对神经网络输入层编码进行了改进,添加了氨基酸残基所处的疏水环境。用PDBSelect25中的36条蛋白质共6 122个残基进行测试,结果表明提出的网络模型和编码方法能有效提高蛋白质二级结构预测的精度。  相似文献   

3.
Myrosinase, the only known S-glycosidase, occurs particularly in Cruciferae family. It is responsible for the hydrolysis of glucosinolates and serves as a vital element of plant defense system. The biological and chemical properties of myrosinase catalyzed products of glucosinolates are well characterized. The myrosinase-protein-sequence of Brassica juncea was retrieved from NCBI database and its 3-D model was generated on the basis of crystal structure of 1MYR-A, 1E4M-M and 1DWA-M chains of myrosinase from Sinapis alba by employing Modeller9v7 program. Homolog templates from S. alba exhibited 72% identity with target sequence. The model was optimized by using molecular dynamics (MD) approach together with simulated annealing (SA) methods in the same Modeller program, and eventually verified and validated on SAVES (Structure Analysis and Verification Server) and PROCHECK programs, respectively. Ramachandran plot obtained through PROCHECK program depicted that 99.8% of total residues were confined to the allowed region while only one residue (Thr92) was restrained to the disallowed region. Additionally, B. juncea myrosinase contains three disulphide bridges which were found to be conserved in S. alba homologs as well. Further, overlapping of B. juncea myrosinase with that of template protein 1MYR-A from S. alba stipulates the amino acid residues Arg115, Gln207, Thr210, Asn350, Tyr352 and Glu429 that constitute active site of the enzyme. Active site analysis also speculates the presence of a hydrophobic pocket in addition to seven N-glycosylation sites. Docking studies of enzyme and substrate illuminate the interactions of various active site residues with diverse groups of sinigrin. Therefore, the present study furnishes the first significant, in silico insight into the 3-D structure, active site machinery, and enzyme-substrate interactions of B. juncea myrosinase.  相似文献   

4.
传感式智能开关控制系统是传统开关控制器的智能化,可视为虚拟开关机器人。文章以教室智能灯具开关为例,从系统数学模型的建立、基本系统结构到系统硬件设计给出了详述。  相似文献   

5.
Analyses of the primary sequence of hemoglobin-binding protein HgbA from Actinobacillus pleuropneumoniae by comparative modelling and by a Hidden Markov Model identified its topological similarities to bacterial outer membrane receptors BtuB, FepA, FhuA, and FecA of Escherichia coli. The HgbA model has a globular N-terminal cork domain contained within a 22-stranded beta barrel domain, its folds being similar to the structures of outer membrane receptors that have been solved by X-ray crystallography. The barrel domain of the HgbA model superimposes onto the barrel domains of the four outer membrane receptors with rmsd values less than 1.0 A. This feature is consistent with a phylogenetic tree which indicated clustering of polypeptide sequences for three barrel domains. Furthermore, the HgbA model shares the highest structural similarity to BtuB, with the modelled HgbA barrel having approximately the same elliptical cross-section and height as that of BtuB. Extracellular loop regions of HgbA are predicted to be more extended than those of the E. coli outer membrane receptors, potentially facilitating a protein-protein interface with hemoglobin. Fold recognition modelling of the HgbA loop regions showed that 10 out of 11 predicted loops are highly homologous to known structures of protein loops that contribute to heme/iron or protein-protein interactions. Strikingly, HgbA loop 2 has structural homology to a loop in bovine endothelial nitric acid oxidase that is proximal to a heme-binding site; and HgbA loop 7 contains a histidine residue conserved in a motif that is involved in heme/hemoglobin interactions. These findings implicate HgbA loops 2 and 7 in recognition and binding of hemoglobin or the heme ligand.  相似文献   

6.
In this study, the three-dimensional structure of the wild-type human telomerase RNA pseudoknot was predicted via molecular modeling. The wild-type pseudoknot structure is then compared to the recent NMR solution structure of the telomerase pseudoknot, which does not contain the U177 bulge. The removal of the bulge from the pseudoknot structure results in higher stability and significant reduction of activity of telomerase. We show that the effect of the bulge on the structure results in a significant transformation of the pseudoknot junction region where the starting base pairs are disrupted and unique triple base pairs are formed. We found that the formation of the junction region is greatly influenced by interactions of the U177 bulge with loop residues and rotation of residue A174. Moreover, this is the first study to our knowledge where a structure as complex as the pseudoknot has been solved by purely theoretical methods.  相似文献   

7.
The disease resistance gene Hm1 of maize encodes a NADPH-dependent reductase enzyme, HC-toxin reductase (HCTR) that detoxifies the HC toxin secreted by the race specific fungus Cochliobolus carbonum race 1. HCTR enzyme shares 29.6% sequence identity with dihydroflavonol reductase (DFR) of grape, a key enzyme involved in flavonoid biosynthesis. Here we report the comparative modelling, molecular dynamics simulation and docking studies to explain the structure–function relationship and the mode of cofactor (NADPH) binding in HCTR enzyme at the molecular level. The nucleotide binding domain of modelled HCTR adopts a classic Rossmann fold and possesses a consensus glycine rich GxGxxG motif. Molecular simulation studies suggested that HCTR model retained stability throughout the simulation in aqueous solution. HCTR model showed considerable structural identities with the cofactor binding site of DFR, but significant difference in the catalytic site might be the reason of functional divergence between these families of proteins. Similarly electrostatic surface potential analysis of both HCTR and DFR revealed profound variations in the charge distribution over the substrate binding site, which can be correlated with the sequence variability and may suggest distinct substrate-binding patterns and differences in the catalytic mechanism. Docking results indicated Phe19, Gly21, Arg40, Thr90, Gly208, Arg218, Glu221 and Thr222 are important residues for cofactor (NADPH) binding through strong hydrogen bonding and electrostatic interactions. Alanine scanning and analysis of docking energies of mutant proteins suggested that Phe19, and Arg40 are two critical residues for the cofactor binding. The result from the present study is expected to pave the way for exploration of similar genes in other economically important crop varieties.  相似文献   

8.
In protein structures, side-chains of asparagine and aspartic acid (Asx) and glutamine and glutamic acid (Glx) can approach their own backbone nitrogen or carbonyl group. We have systematically analyzed intra-residue contacts in Asx and Glx residues and their secondary structure preferences in two different datasets consisting of 500 and 1506 high-resolution structures. Intra-residue contact in an Asx/Glx residue between the heavy atoms of side-chain and main-chain functional groups of the same residue was investigated irrespective of whether such contacts are due to hydrogen bonding or not. Our search yielded 563 and 1462 cases of self-contacting Asx and Glx residues from the two datasets. Two important observations have been made in this analysis. First, self-contacts involving side-chain oxygen and backbone nitrogen atoms in majority of Asx residues are not due to hydrogen bonds. In the second instance, surprisingly, side-chain and backbone carbonyl oxygens of a significant number of Asx and Glx residues approach each other. For a wide-range of accessible surface areas, self-contacting residues are surrounded by less number of polar groups compared to all other Asx/Glx residues. In buried and partially buried regions, side-chain and main-chain functional groups of these residues together participate in simultaneous interactions with the available polar groups or water molecules. Asx/Glx residues with self-contacts are rarely observed in the middle of an α-helix or a β-strand. Asx/Glx side-chain having contact with its own backbone nitrogen shows different capping preferences compared to those having contact with its backbone oxygen. Examples of proteins with multiple self-contacting Asx/Glx residues are found. We speculate that mutation of a self-contacting residue in the buried or partially buried region of a protein will destabilize the structure. The results of this analysis will help in engineering protein structures and site-directed mutagenesis experiments.  相似文献   

9.
The α7 helix is either disordered or missing in the three co-crystal structures of allosteric inhibitors with protein tyrosine phosphatase 1B (PTP1B). It was modeled in each complex using the open form of PTP1B structure and studied using molecular dynamics (MD) simulations for 25 ns. B-factor analysis of the residues sheds light on its disordered nature in the co-crystal structures. Further, the ability of inhibitors to act as allosteric inhibitor was studied and established using novel hydrogen bond criteria. The MD simulations were utilized to determine the relative importance of electrostatic and hydrophobic component in to the binding of inhibitors. It was revealed that the hydrophobic interactions predominantly drive the molecular recognition of these inhibitors. Per residue energy decomposition analysis attributed dissimilar affinities of three inhibitors to the several hydrogen bonds and non-bonded interactions. Among the secondary structure elements that surround the allosteric site, helices α6, α7 and loop α6–α7 were notorious in providing variable affinities to the inhibitors. A novel hydrophobic pocket lined by the α7 helix residues Val287, Asn289 and Trp291 was identified in the allosteric site. This study provides useful insights for the rational design of high affinity PTP1B allosteric inhibitors.  相似文献   

10.
The effect of pressure on the structure and mobility of lysozyme was studied by molecular dynamics computer simulation at 1 and 3 kbar (1 atm = 1.01325 bar = 101.325 kPa). The results have good agreement with the available experimental data, allowing the analysis of other features of the effect of pressure on the protein solution. The studies of mobility show that although the general mobility is restricted under pressure this is not true for some particular residues. From the analysis of secondary structure along the trajectories it is observed that the conformation under pressure is more stable, suggesting that pressure acts as a 'conformer selector' on the protein. The difference in solvent-accessed surface (SAS) with pressure shows a clear inversion of the hydrophilic/hydrophobic SAS ratio, which consequently shows that the hydrophobic interaction is considerably weaker under high hydrostatic pressure conditions.  相似文献   

11.
Molecular modeling provides a mechanistic hypothesis at the molecular level for the constitutive activation recently observed and reported for tyrosine protein kinases Flt-3 and c-Kit. Three-dimensional homology models for the active and inactive forms of these two kinases were made. Comparison of these models at the molecular level reveals that mutations of specific residues located in the activation loop (D835X and 836-deletion in Flt-3; D816V in c-Kit) as well as a 6-base pair (6-bp) insertion at residue 840 in Flt-3 operate in a similar way. Each mutation tends to weaken the forces that maintain the activation-loop folded inwards. None of the mutations are found to particularly stabilize the active state directly. The reason why the equilibrium is shifted towards the gate-open conformation of the protein is because, at least in these models, the mutations are found to critically destabilize the inactive conformational state of the kinase.  相似文献   

12.
The surface of a molecule holds important information about the interaction behavior with other molecules. In dynamic folding or docking processes, residues of amino acids with different properties change their position within the molecule over time. The atoms of the residues that are accessible to the solvent can directly contribute to binding interactions, while residues buried within the molecular structure contribute to the stability of the molecule. Understanding patterns and causality of structural changes is important for experts in the pharmaceutical domain, e.g., in the process of drug design. We apply an iterative computation of the Solvent Accessible Surface in order to extract virtual layers of a molecule. The extraction allows to track the movement of residues in the body of the molecule, with respect to the distance of the residue to the surface or the core during dynamics simulations. We visualize the obtained layer information for the complete time span of the molecular dynamics simulation as a 2D‐map and for individual time‐steps as a 3D‐representation of the molecule. The data acquisition has been implemented alongside with further analysis functionality in a prototypical application, which is available to the public domain. We underline the feasibility of our approach with a study from the pharmaceutical domain, where our approach has been used for novel insights into the folding behavior of μ‐conotoxins.  相似文献   

13.
Porphyromonas gingivalis is a major periodontitis-causing pathogens. P. gingivalis secrete a cysteine protease termed RgpB, which is specific for Arg-Xaa bonds in substrates. Recently, a nanobody-based assay was used to demonstrate that RgpB could represent a novel diagnostic target, thereby simplifying. P. gingivalis detection. The nanobody, VHH7, had a high binding affinity and was specific for RgpB, when tested towards the highly identical RgpA.In this study a homology model of VHH7 was build. The complementarity determining regions (CDR) comprising the paratope residues responsible for RgpB binding were identified and used as input to the docking. Furthermore, residues likely involved in the RgpB epitope was identified based upon RgpB:RgpA alignment and analysis of residue surface accessibility. CDR residues and putitative RgpB epitope residues were used as input to an information-driven flexible docking approach using the HADDOCK server. Analysis of the VHH7:RgpB model demonstrated that the epitope was found in the immunoglobulin-like domain and residue pairs located at the molecular paratope:epitope interface important for complex stability was identified.Collectively, the VHH7 homology model and VHH7:RgpB docking supplies knowledge of the residues involved in the high affinity interaction. This information could prove valuable in the design of an antibody-drug conjugate for specific RgpB targeting.  相似文献   

14.
Lipoprotein lipase (LPL) plays a central role in lipid metabolism. The D9N and N291S mutations in the LPL gene are associated with elevated triglyceride and decreased HDL-cholesterol levels. Published in vitro expression studies suggest that these two mutations are associated with reduced LPL enzymatic activity. We sought to gain further insight on the impact of these two mutations on the LPL structure and function by molecular modelling techniques. Homology modelling was used to develop a three-dimensional (3D) structure of LPL from human pancreatic lipase. Two separate LPL models for the D9N and N291S substitutions were constructed and compared with the wild type LPL for differences in hydrophobicity, atomic burial, hydrogen bond pattern, and atomic mobility. In comparison to the wild type model, the 9N model was associated with significantly increased atomic mobility of its neighboring residues, but the catalytic site was not affected. The region near residue 9 in the upper part of the N-domain was considered a candidate site for protein-protein interaction. In the N291S model, alterations in H-bonds and constrained atomic mobility were among conformational changes in the region where the substitution had occurred. These are hypothesized to cause an increase in the rate of dissociation in LPL dimerization, subsequently affecting the LPL enzymatic activity. We also modelled the C-domain of apoCII, the obligatory cofactor of LPL, from 2D NMR data and docked the model with LPL to explore their interaction site. These docking experiments suggest that the C-domain of apoCII interacts with the interface of N- and C-domains of LPL and part of the lid structure that covers the catalytic site. In summary, we provide molecular modelling data on two well-known mutations in the LPL gene to help explain the published in vitro expression findings and propose a possible LPL-apoCII interaction site. Our data indicate that molecular modelling of LPL mutations could provide a valuable tool to understand the effects of a mutation on the structure-function of this important enzyme.  相似文献   

15.
Lipoprotein lipase (LPL) plays a central role in lipid metabolism. The D9N and N291S mutations in the LPL gene are associated with elevated triglyceride and decreased HDL-cholesterol levels. Published in vitro expression studies suggest that these two mutations are associated with reduced LPL enzymatic activity. We sought to gain further insight on the impact of these two mutations on the LPL structure and function by molecular modelling techniques. Homology modelling was used to develop a three-dimensional (3D) structure of LPL from human pancreatic lipase. Two separate LPL models for the D9N and N291S substitutions were constructed and compared with the wild type LPL for differences in hydrophobicity, atomic burial, hydrogen bond pattern, and atomic mobility. In comparison to the wild type model, the 9N model was associated with significantly increased atomic mobility of its neighboring residues, but the catalytic site was not affected. The region near residue 9 in the upper part of the N-domain was considered a candidate site for protein–protein interaction. In the N291S model, alterations in H-bonds and constrained atomic mobility were among conformational changes in the region where the substitution had occurred. These are hypothesized to cause an increase in the rate of dissociation in LPL dimerization, subsequently affecting the LPL enzymatic activity. We also modelled the C-domain of apoCII, the obligatory cofactor of LPL, from 2D NMR data and docked the model with LPL to explore their interaction site. These docking experiments suggest that the C-domain of apoCII interacts with the interface of N- and C-domains of LPL and part of the lid structure that covers the catalytic site. In summary, we provide molecular modelling data on two well-known mutations in the LPL gene to help explain the published in vitro expression findings and propose a possible LPL-apoCII interaction site. Our data indicate that molecular modelling of LPL mutations could provide a valuable tool to understand the effects of a mutation on the structure–function of this important enzyme.  相似文献   

16.
The prediction of protein function from structure is becoming of growing importance in the age of structural genomics. We have focused on the problem of identifying sites of potential serine protease inhibitor interactions on the surface of proteins of known structure. Given that there is no sequence conservation within canonical loops from different inhibitor families we first compare representative loops to all fragments of equal length among proteins of known structure by calculating main-chain RMS deviation. Fragments with RMS deviation below a certain threshold (hits) are removed if residues have solvent accessibilities appreciably lower than those observed in the search structure. These remaining hits are further filtered to remove those occurring largely within secondary structure elements. Likely functional significance is restricted further by considering only extracellular protein domains. Also a test is performed to see if the loop can dock into the binding site of the serine protease trypsin without unacceptable steric clashes. By comparing different canonical loop structures to the protein structure database we show that the method was able to detect previously known inhibitors. In addition, we discuss potentially new canonical loop structures found in secreted hydrolases, toxins, viral proteins, cytokines and other proteins. We discuss the possible functional significance of several of the examples found.  相似文献   

17.
《Computers & chemistry》2002,26(1):31-39
The prediction of protein function from structure is becoming of growing importance in the age of structural genomics. We have focused on the problem of identifying sites of potential serine protease inhibitor interactions on the surface of proteins of known structure. Given that there is no sequence conservation within canonical loops from different inhibitor families we first compare representative loops to all fragments of equal length among proteins of known structure by calculating main-chain RMS deviation. Fragments with RMS deviation below a certain threshold (hits) are removed if residues have solvent accessibilities appreciably lower than those observed in the search structure. These remaining hits are further filtered to remove those occurring largely within secondary structure elements. Likely functional significance is restricted further by considering only extracellular protein domains. Also a test is performed to see if the loop can dock into the binding site of the serine protease trypsin without unacceptable steric clashes. By comparing different canonical loop structures to the protein structure database we show that the method was able to detect previously known inhibitors. In addition, we discuss potentially new canonical loop structures found in secreted hydrolases, toxins, viral proteins, cytokines and other proteins. We discuss the possible functional significance of several of the examples found.  相似文献   

18.
The superoxide anions in the human body are reduced into hydrogen peroxide and molecular oxygen by the metallo enzyme Cu–Zn superoxide dismutase 1. The disulfide bond in SOD1 is essential to maintain the structural stability of protein and its proper folding. A computational study on the disulfide bond with the addition of residues was made using three different level of theories viz., B3LYP/6-31G (d,p), M052X/6-31G (d,p) and MP2/6-31G (d,p). The nature of disulfide bond was found to be unaffected with the additional residues being attached to the termini of cysteine residues. This result was found to be in agreement with the experimental values. The results of Molecular Dynamics simulation illustrate the crinkled appearance caused in the disulfide loop of A4V mutation. The conformational change in the disulfide loop was found to have significant effect on the loss of dimerization, metal binding affinity and overall protein stability. It is also noted that the disulfide loop with more number of residues is found to have no effect on the disulfide bond characteristics, but the disulfide loop with less number of residues is found to have remarkable effect for mutation in any position of the wild type protein.  相似文献   

19.
基于FPGA的数字Costas锁相环路的设计   总被引:4,自引:0,他引:4  
介绍了应用EDA技术设计嵌入式全数字Costas锁相环路的方法.建立了连续域环路线性模型,给出环路方程,并利用连续域和离散的变换关系,即Laplace变换和Z变换的关系,由连续域环路的线性相位模型推导出了离散域环路的线性相位模型,由此来讨论二阶Costas环路在离散域实现方法,讨论了离散域中环路滤波器的传递函数及实现,讨论了DCO的离散设计方法及实现,并采用从逻辑电路的顶层到底层以及模块化的设计思想,用VHDL缟程语言,通过逻辑综合和仿真,可缟程逻辑器件FPGA予以实现.  相似文献   

20.
N-glycosylation is a process during which a glycan moiety attaches to the asparagine residue in the N-glycosylation consensus sequence (Asn-Xxx-Ser/Thr), where Xxx can be any amino acid except proline. Introduction of a new N-glycosylation site into a protein backbone leads to its hyper-glycosylation, and may improve the protein properties such as solubility, folding, stability, and secretion. Glyco-engineering is an approach to facilitate the hyper-glycosylation of recombinant proteins by application of the site-directed mutagenesis methods. In this regard, selection of a suitable location on the surface of a protein for introduction of a new N-glycosylation site is a main concern. In this work, a computational approach was conducted to select suitable location(s) for introducing new N-glycosylation sites into the human coagulation factor IX (hFIX). With this aim, the first 45 residues of mature hFIX were explored to find out suitable positions for introducing either Asn or Ser/Thr residues, to create new N-glycosylation site(s). Our exploration lead to detection of five potential positions, for hyper-glycosylation. For each suggested position, an analog was defined and subjected for N-glycosylation efficiency prediction. After generation of three-dimensional structures, by homology-based modeling, the five designed analogs were examined by molecular dynamic (MD) simulations, to predict their stability levels and probable structural distortions caused by amino acid substitutions, relative to the native counterpart.Three out of five suggested analogs, namely; E15T, K22N, and R37N, reached equilibration state with relatively constant Root Mean Square Deviation values. Additional analysis on the data obtained during MD simulations, lead us to conclude that, R37N is the only qualified analog with the most similar structure and dynamic behavior to that of the native counterpart, to be considered for further experimental investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号