首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hexavalent chromium [Cr(VI)] contamination of soil and groundwater is a major concern for some industrial sites as well as many United States Department of Energy sites. Bioreduction of Cr(VI) to less toxic and less mobile Cr(III) has received much attention as a viable method of remediation. However, bioreduction of Cr(VI) also produces soluble organo–Cr(III) complexes and little is known about the fate of these complexes in the environment. Cr(VI) was reduced abiotically in the presence of cellular organic compounds (malate, cysteine, and serine) and biotically in the presence of two test organisms (Cellulomonas ES6 and S. oneidensis MR1). The soluble organo–Cr(III) complexes formed were then introduced to soil columns to evaluate their sorption affinity and transport characteristics. The column data indicated that a significant fraction of the biologically derived organo–Cr(III) complexes are both soluble and mobile. Other complexes were observed to have limited mobility, indicating that a heterogeneous mixture of complexes are formed during biological reduction of Cr(VI).  相似文献   

2.
The biological reduction of uranium from soluble U(VI) to insoluble U(IV) has shown potential to prevent uranium migration in groundwater. To gain insight into the extent of uranium reduction that can occur during biostimulation and to what degree U(IV) reoxidation will occur under field relevant conditions after biostimulation is terminated, X-ray absorption near edge structure (XANES) spectroscopy was used to monitor: (1) uranium speciation in situ in a flowing column while active reduction was occurring; and (2) in situ postbiostimulation uranium stability and speciation when exposed to incoming oxic water. Results show that after 70 days of bioreduction in a high (30?mM) bicarbonate solution, the majority (>90%) of the uranium in the column was immobilized as U(IV). After acetate addition was terminated and oxic water entered the column, in situ real-time XANES analysis showed that U(IV) reoxidation to U(VI) (and subsequent remobilization) occurred rapidly (on the order of minutes) within the reach of the oxygen front and the spatial and temporal XANES spectra captured during reoxidation allowed for real-time uranium reoxidation rates to be calculated.  相似文献   

3.
This paper investigates the ability of olive stone to remove chromium (VI) ions from aqueous solution in a packed bed up-flow column with an internal diameter of 1.5 cm. The experiments were performed with a bed height of 15 g (13.4 cm) and a flow rate of 2 mL/min. To predict the breakthrough curves and to determine the characteristic parameters of the column useful for process design, four kinetic models; Adams-Bohart, Thomas, Yoon-Nelson, and Dose-Response models were applied to the experimental data. All models were found suitable for describing the whole or a definite part of the dynamic behavior of the column. The simulation of the whole breakthrough curve was effective with the Dose-Response model, but the initial part of the breakthrough was best predicted by the Adams-Bohart model. On the other hand, the results indicated that, at pH values of this work, approximately 50% of Cr (VI) is biosorbed by olive stone and the other 50% is reduced to Cr (III), both processes being of equal importance. Therefore, a two-stage biosorption process was developed. The goal of these final experiments was to confirm that Cr (III) [the Cr (VI) reduction product] was also effectively sorbed by olive stone in a second column.  相似文献   

4.
In investigating chromium sites in New Jersey, it has been observed that an organic-rich 0.5- to 4-foot-thick layer of decayed vegetation (locally known as "meadowmat") underlying the chromium-containing material acts as a natural barrier to the migration of Cr(VI). The groundwater in a sand layer directly beneath the meadowmat has been shown to contain low or nondetectable levels of chromium. The meadowmat is under highly reduced conditions due to bacterial activity associated with the organic material. Based on the observed ability of the meadowmat to reduce Cr(VI) to Cr(III), the feasibility of in situ reduction of Cr(VI) to Cr(III) at chromite ore processing residue (COPR) sites was investigated in biologically-active, laboratory-scale test columns. COPR typically has a high pH (in excess of 12) and may contain total chromium concentrations as high as 70,000 mg/kg. Experimental results demonstrated that the addition of a mineral acid (to lower the pH to between 7.0 and 9.5) and a bacteria-rich organic substrate (fresh manure) resulted in the reduction of Cr(VI) to the less toxic and less mobile trivalent form. Pore water Cr(VI) was reduced from approximately 800 mg/L to less than 0.05 mg/L over a period of eight months. This is less than the U.S. Environmental Protection Agency's (EPA) Maximum Contaminant Level (MCL) for chromium in drinking water of 0.1 mg/L. Solid phase Cr(VI) concentrations decreased from approximately 2,000 mg/kg to less than 10 mg/kg in the columns over a period of 11 months while the total chromium concentrations remained unchanged. Toxicity Characteristic Leaching Procedure (TCLP) extract from the treated columns met the regulatory limit of 5 mg/L of Cr, whereas the untreated samples had TCLP extract concentrations greater than 40 mg/L. This study demonstrated the potential applicability of in situ reduction to soils contaminated with Cr(VI) by adjusting the pH to between 7.0 and 9.5 and mixing in a bacteria-rich organic substrate.  相似文献   

5.
Column tests were conducted to evaluate two treatment strategies for reducing and stabilizing hexavalent chromium, Cr(VI), in chromium ore processing residue (COPR): permeation with a FeSO4–H2SO4 solution and blending with a cationic polysulfide reagent (CaSX). Cr(VI) leached at concentrations exceeding 50?mg/L from untreated COPR permeated with synthetic groundwater for >20 pore volumes of flow (PVF), and concentrations of Cr(VI) in the solid phase remained high (6,600?mg/kg). Permeation with solutions containing FeSO4–H2SO4 eliminated Cr(VI) from the effluent after initial, elevated leaching of Cr(VI) (100–1,500?mg/kg); however, high solid-phase concentrations of Cr(VI) remained in the column residuals (>1,300?mg/kg). COPR treated with CaSX leached Cr at <0.33?mg/L for 23.5 PVF and had solid-phase concentrations of Cr(VI) <10?mg/kg, although mineralogical analyses of treated solids showed potential chromate-containing mineral phases. Mineralogical analyses showed that precipitation and cementation occurred in the pore space of the COPR permeated with FeSO4–H2SO4, initially lowering the hydraulic conductivity > two orders of magnitude. However, acid dissolution channels eventually formed, resulting in preferential flow. COPR permeated with FeSO4–H2SO4 contained less brownmillerite and Cr(VI)-bearing hydrocalumite and hydrogarnet relative to untreated COPR. For COPR treated with CaSx, S encapsulated the subparticles of COPR with some micropore penetration, suggesting permanence of excess reductant after leaching with 23.5 PVF of synthetic rainwater.  相似文献   

6.
In order to understand the redox chemistry of chromium at low concentrations (100?μg/L) under conditions typically found in drinking water systems, three reductants and four oxidants were tested in three different waters at pH 5, 7, and 9. In the absence of any oxidant or reductant, Cr(VI) was stable at all three pHs, while Cr(III) precipitated out of solution at pH 9 and greatly impacted the reduction reactions. Stannous chloride was more effective than sodium sulfite or sodium sulfide for reducing Cr(VI) to Cr(III). Sulfide is not likely to be used as a reductant due to the long reaction time (120?h) to achieve the same reduction as SnCl2, while sulfite may be effective at higher doses. The oxidation of Cr(III) by dissolved oxygen and chloramine was very slow, while Cl2 and KMnO4 were effective oxidants under many conditions. A Cl2 residual in a drinking water distribution system may oxidize any soluble Cr(III) to Cr(VI) because of the long contact time, so Cr treatment strategies will need to remove both Cr(III) and Cr(VI).  相似文献   

7.
A novel treatment process for arsenic removal from contaminated groundwater has been developed for use as a reactive barrier or a small drinking water treatment unit. In this study, modified porous media was made by the deposition of colloidal iron oxide onto sand grains at intermediate pH and ionic strength. Kd values from column experiments were 0.016–0.37?L/kg for As(III) and 0.023–0.85?L/kg for As(V), being lower than those of batch experiments (0.50 and 1.30?L/kg for As(III) and As(V), respectively) due to lower availability of surface adsorption sites in the packed column. Media-independent Kd values reflect the enhancement of arsenic adsorption with an increase of colloidal iron oxide coated sand fraction, apparently due to adsorption equilibration during arsenic transport under the same flow column conditions. The heterogeneous composition of two groundwater samples also reduced arsenic adsorption. Therefore, arsenic elution near the initial breakthrough was regulated by available adsorption surface in a porous coated sand media as well as the effects of competing oxyanions. The exhaustion of adsorption capacity near the critical contamination level is sensitive to geochemical and remedial properties of the contaminants.  相似文献   

8.
An adsorption gel was prepared from persimmon waste, a cellulosic material, rich in polyphenolic compounds, which exhibits a high affinity for chromium(VI). It was prepared by cross-linking persimmon waste with concentrated sulphuric acid. Adsorption tests for different metal ions such as Cr(VI), Cr(III), Fe(III), Zn(II), Cd(II) and Pb(II) from aqueous solution at pH values ranging from (pH 1 to 5) found Cr(VI) to be selectively adsorbed on the cross-linked gel over the other metal ions studied. The adsorption isotherm of Cr(VI) followed the Langmuir type of adsorption and exhibited a maximum loading capacity of 7.18 mol kg− 1 at pH 1. Selective removal of Cr(VI) from Zn(II) was successfully demonstrated by using a column packed with the persimmon waste gel.  相似文献   

9.
Current research focuses on the simultaneous removal of Cd and Cr(VI) in water by a newly developed material having both abilities of sorption and electrochemical reduction. The material was derived from the zeolite modified by Fe(II) chloride followed by sodium borohydride reduction. The Fe-loaded zeolite simultaneously removed Cd and Cr(VI) to below the detection limit at a fairly rapid rate within 1?h for Cd and within 20?h for Cr(VI), under the pH ranging from slightly acid to around neutral. At high concentration of coexisting Cr(VI), the removal efficiency of Fe-loaded zeolite for Cd slightly decreased due to surface fouling by Cr(III) hydroxide precipitations. On the contrary, the coexisting Cd was found to increase the removal rate of Cr(VI) by Fe-loaded zeolite. From the test results, the Fe-loaded zeolite was found to be a possible alternative in simultaneous removal of Cd and Cr(VI) in the aqueous phase.  相似文献   

10.
铬渣的微生物治理新技术研究   总被引:3,自引:0,他引:3  
本研究采用课题组发现的还原Cr(VI)的专属无色杆菌属Ch-1菌株,对铬渣进行微生物治理。结果表明:铬渣渗滤液经该菌处理后,其中的Cr(VI)可达排放标准,沉淀物中Cr(OH)3含量达32.8%,具有实际回收价值。将铬渣进行微生物柱浸,7d后溶液中检测不出cr(VI);解毒后铬渣中Cr(VI)达到国家危险废物毒性鉴别标准(GB5085-1996)。  相似文献   

11.
Development of a new method for the determination of Cr(III) and Cr(VI) is described. Anion-exchange high-performance liquid chromatography (HPLC) was used to separate Cr(III) and Cr(VI) with on-line detection by inductively coupled plasma atomic emission spectroscopy (ICP-AES) at 2766 A in preliminary studies, and inductively coupled plasma mass spectrometry (ICP-MS) with single-ion monitoring at m/z 52 and m/z 53 for final work. A mobile phase consisting of ammonium sulfate and ammonium hydroxide was used, and a simple chelation procedure with EDTA was followed to stabilize the Cr(III) species in standard solutions. ICP-MS results indicated the feasibility of using chromium isotope m/z 53 instead of the more abundant m/z 52 isotope due to a high mobile-phase background most significantly from the SO+ polyatomic interference. The absolute detection limits based on peak-height calculations were 40 pg for Cr(III) and 100 pg for Cr(VI) in aqueous media by HPLC-ICP-MS. The linear dynamic range extended from 5 ppb (ng/ml) to 1 ppm (micrograms/ml) for both species. By HPLC-ICP-AES, detection limits were 100 ng for Cr(III) and 200 ng for Cr(VI). Cr(III) was detected in NIST-SRM 1643c (National Institute of Standards and Technology-Standard Reference Material, Trace Elements in Water) by HPLC-ICP-MS at the 20 ppb level.  相似文献   

12.
This study examines the magnitude of hexavalent chromium [Cr(VI)] absorption, distribution, and excretion following oral exposure to 5 and 10 mg Cr(VI)/L in drinking water administered as a single bolus dose (0.5 L swallowed in 2 min) or for 3 d at a dosage of 1 L/d (3 doses of 0.33 L each day, at 6-h intervals). Adult male volunteers ingested deionized water containing various concentrations of potassium chromate, and samples of urine, plasma, and red blood cells (RBCs) were collected and analyzed for total chromium throughout the studies. In the bolus dose studies, a fairly consistent pattern of urinary chromium excretion was observed, with an average half life of about 39 h. However, 4-d total urinary chromium excretion and peak concentrations in urine and blood varied considerably among the 5 volunteers. Studies of repeated exposure to smaller volumes ingested at a more gradual rate (i.e., 0.33 L over 5-15 min) showed similar urinary chromium excretion patterns but generally lower chromium uptake/excretion. Given that sustained elevations in RBC chromium levels provide a specific indication of chromium absorption in the hexavalent state, these data suggest that virtually all (> 99.7%) of the ingested Cr(VI) at 5 and 10 mg Cr(VI)/L was reduced to Cr(III) before entering the blood-stream. The interindividual differences in total chromium uptake and excretion are plausibly explained by ingestion of appreciable doses on an empty stomach, which likely results in the formation of well-absorbed Cr(III) organic complexes in gastrointestinal tissues and possibly the blood. The lack of any clinical indications of toxicity in the volunteers and the patterns of blood uptake and urinary excretion of chromium are consistent with a predominant uptake of Cr(III) organic complexes [derived from Cr(VI)] that are excreted more slowly than inorganic forms of Cr(III). Therefore, it appears that the endogenous reducing agents within the upper gastrointestinal tract and the blood provide sufficient reducing potential to prevent any substantial systemic uptake of Cr(VI) following drinking-water exposures at 5-10 mg Cr(VI)/L. Based on these data, the chemical environment in the gastrointestinal tract and the blood is effective even under relative fasting conditions in reducing Cr(VI) to one or more forms of Cr(III).  相似文献   

13.
Adsorption of Cr(VI) onto hydrous concrete particles in synthetic groundwater was investigated with batch equilibrium adsorption experiments. Results show marked adsorption under acidic conditions, and the amount of Cr(VI) adsorbed decreases with increasing solution pH and surface loading. A surface complex formation model was employed to describe the adsorption of Cr(VI) onto concrete particles. The adsorption-free energy of HCrO?4 and CrO2?4 species are ?6.16 and ?8.53 kcal∕mol, respectively. Results also indicate that specific chemical interaction is the major mechanism responsible for the adsorption process.  相似文献   

14.
Bacillus strain QC1-2, isolated from a chromium-polluted zone, was selected by its high ability to both tolerate and reduce hexavalent chromium [Cr(VI)] to less-toxic trivalent chromium [Cr(III)]. Cell suspensions of strain QC1-2 rapidly reduced Cr(VI), in both aerobic and anaerobic conditions, to Cr(III) which remained in the supernatant. Cr(VI) reduction was dependent on the addition of glucose but sulfate, an inhibitor of chromate transport, had no effect. Studies with permeabilized cells and cell extracts showed that the Cr(VI) reductase of strain QC1-2 is a soluble NADH-dependent enzyme.  相似文献   

15.
The primary health concern associated with chromite ore processing residues (COPR) at sites in Hudson County, NJ, is the inhalation of Cr(VI) suspended from surface soils. Since health-based soil standards for Cr(VI) will be derived using the inhalation pathway, soil suspension modeling will be necessary to estimate site-specific, health-based soil cleanup levels (HBSCLs). The purpose of this study was to identify the most appropriate particulate emission and air dispersion models for estimating soil suspension at these sites based on their theoretical underpinnings, scientific acceptability, and past performance. The identified modeling approach, the AP-42 particulate emission model and the fugitive dust model (FDM), was used to calculate concentrations of airborne Cr(VI) and TSP at two COPR sites. These estimated concentrations were then compared to concentrations measured at each site. The TSP concentrations calculated using the AP-42/FDM soil suspension modeling approach were all within a factor of 3 of the measured concentrations. The majority of the estimated air concentrations were greater than the measured, indicating that the AP-42/FDM approach tends to overestimate on-site concentrations. The site-specific Cr(VI) HBSCLs for these two sites calculated using this conservative soil suspension modeling approach ranged from 190 to 420 mg/kg.  相似文献   

16.
In a laboratory study, manganese amended activated alumina (MAA), prepared by calcining (400°C) manganese acetate-impregnated activated alumina, showed promise as a more effective medium than activated alumina (AA) for use in small municipal drinking water systems or point-of-use treatment, for removing arsenic [As(III) and As(V)] from groundwater. Batch adsorption/oxidation kinetic tests indicated that in fixed-bed operation, with a bed flowthrough time of 10–20?min, MAA would be a more effective medium than AA in removing arsenic [As(V), As(III), and As(III) and As(V) (present together)] from groundwater. In three cycles of downflow column test [bed depth 200?mm; bed flowthrough time 20?min; influent arsenic 1.0–0.6?mg/L As(III) and 0.4?mg/L As(V)], breakthrough bed volumes at the World Health Organization guideline value of 0.01?mg/L for arsenic in drinking water were 580, 550, and 485, and 825, 770, and 695, respectively, for AA and MAA. During regeneration (backwashing with a sodium hydroxide solution), 84–88% (for AA) and 86–89% (for MAA) of the removed arsenic was recovered. Manganese concentration in the MAA column effluent was low (below 0.02?mg/L). A detailed study addressing the effects of some important factors (water pH, concentration and type of competing ions, and fouling by organics) on the process is needed.  相似文献   

17.
Trivalent chromium (Cr(III)), the ultimate species of chromium (VI) intracellular reduction, can associate with DNA forming Cr(III) monoadducts and DNA-DNA cross-links. However, the mutational specificity of Cr(III) has not been determined partly because Cr(III) has difficulty entering cells. In this study, we have characterized the types of Cr(III)-induced DNA lesions in two buffer systems and the mutational spectrum of Cr(III)-treated shuttle vectors replicated in human 293 cells. Plasmids were treated with Cr(III) in buffers consisting of either 10 mM potassium phosphate, pH 7.5 (designated as KP), or 0.2 mM Tris-HCl and 20 microM EDTA, pH 7.4 (designated as TE/50). The amounts of Cr(III) bound to DNA increased as Cr(III) concentration increased in both buffers; these Cr(III)-DNA associations were stable in both buffers during a 24-h dialysis. The electrophoretic mobility of supercoiled DNA was markedly retarded in samples treated with Cr(III) in TE/50 but not KP buffer, suggesting that Cr(III)-mediated DNA-DNA cross-links were generated in TE/50 but did not form in KP. Polymerase-stop assay showed that DNA polymerases were mostly blocked at the 3' adjacent bases of guanines on templates treated with Cr(III) in TE/50 but were not observed on those treated in KP. The signals of Cr(III)-mediated cross-links generated in TE/50 buffers were reduced when they were dialyzed against KP buffers. Similarly, Cr(III)-DNA monoadducts formed in KP were converted to primer-template cross-links by dialysis against TE/50. The mutation frequency of Cr(III) in the supF gene of pSP189 or pZ189 shuttle vectors replicated in human cells increased as Cr(III) concentration increased in both buffers. DNA sequencing analysis showed that single-base substitutions (61-68%), two-base substitutions (3-5%), and deletions (21-34%) were induced in similar frequencies in plasmids treated with Cr(III) in either TE/ 50 or KP. The Cr(III)-induced base-substitution hot spots are different from those occurring spontaneously. Cr(III) enhances G.C base substitutions, particularly G.C-->C.G transversions, at 5'GA, 5'CG, and 5'AG sites. Base-substitution hot spots did not correlate with strong polymerase-stop sites, suggesting that base substitutions are derived from Cr(III) monoadducts, not from DNA-DNA cross-links.  相似文献   

18.
These studies investigate the magnitude and valence state of chromium absorbed following plausible drinking water exposures to chromium(VI). Four adult male volunteers ingested a single dose of 5 mg Cr (in 0.5 liters deionized water) in three choromium mixtures: (1) Cr(III) chloride (CrCl3), (2) potassium dichromate reduced with orange juice (cr(III)-OJ); and (3) potassium dichromate [Cr(VI)]. Blood and urine chromium levels were followed for 1-3 days prior to and up to 12 days after ingestion. The three mixtures showed quite different pharmacokinetic patterns. CrCl3 was poorly absorbed (estimated 0.13% bioavailability) and rapidly eliminated in urine (excretion half-life, approximately 10 hr), whereas Cr(III)-OJ was absorbed more efficiently (0.60% bioavailability) but more slowly (half-life, approximately 17 hr), and Cr(VI) had the highest bioavailability (6.9%) and the longest half-life (approximately 39 hr). All three chromium mixtures caused temporary elevations in red blood cell (RBC) and plasma chromium concentrations, but the magnitude and duration of elevation showed a clear trend (Cr(VI) > Cr(III)-OJ > CrCl3). The data suggest that nearly all the ingested Cr(VI) was reduced to Cr(III) before entering the bloodstream based on comparison to RBC and plasma chromium patterns in animals exposed to high doses of Cr(VI). These findings support our prior work which suggests that water-soluble organic complexes of Cr(III) formed during the reduction of Cr(VI) in vivo explain the patterns of blood uptake and urinary excretion in humans at drinking water concentrations of 10 mg/liter or less.  相似文献   

19.
Eleven columns were set up under various groundwater geochemistry conditions to investigate the competitive effect of trichloroethylene (TCE) on hexavalent chromium [Cr(VI)] removal by zero-valent iron (Fe0). They were found to be electron competitors in the redox reactions. In the presence of TCE, the Cr(VI) removal capacities of Fe0 were decreased by about 40% when compared with their respective Cr(VI) removal capacities with identical groundwater geochemistry but without TCE. The specific reaction rate constant (kSA) of TCE was decreased by about 50% when Cr(VI) was singly applied. The kSA of TCE was further decreased by 75% in the presence of both Cr(VI) and carbonate. However, there was no apparent effect on the kSA of TCE when Cr(VI), hardness and carbonate were all present. It revealed that TCE was a stronger electron competitor of Cr(VI) and the degradation of TCE became more favorable when both hardness and carbonate were present. This suggests that the passivated precipitates formed on the Fe0 surface in the presence of both hardness and carbonate may significantly affect the Cr(VI) removal by Fe0 but has insignificant effect on the TCE removal.  相似文献   

20.
Carcinogenic Cr(VI) compounds were previously found to induce amino acid/glutathione-Cr(III)-DNA crosslinks with the site of adduction on the phosphate backbone. Utilizing the pSP189 shuttle vector plasmid we found that these ternary DNA adducts were mutagenic in human fibroblasts. The Cr(III)-glutathione adduct was the most potent in this assay, followed by Cr(III)-His and Cr(III)-Cys adducts. Binary Cr(III)-DNA complexes were only weakly mutagenic, inducing a significant response only at a 10 times higher number of adducts compared with Cr(III)-glutathione. Single base substitutions at the G:C base pairs were the predominant type of mutations for all Cr(III) adducts. Cr(III), Cr(III)-Cys and Cr(III)-His adducts induced G:C-->A:T transitions and G:C-->T:A transversions with almost equal frequency, whereas the Cr(III)-glutathione mutational spectrum was dominated by G:C-->T:A transversions. Adduct-induced mutations were targeted toward G:C base pairs with either A or G in the 3' position to the mutated G, while spontaneous mutations occurred mostly at G:C base pairs with a 3' A. No correlation was found between the sites of DNA adduction and positions of base substitution, as adducts were formed randomly on DNA with no base specificity. The observed mutagenicity of Cr(III)-induced phosphotriesters demonstrates the importance of a Cr(III)-dependent pathway in Cr(VI) carcinogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号