首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 190 毫秒
1.
循环流化床多组分颗粒气固两相流动模型和数值模拟   总被引:7,自引:2,他引:5  
刘阳  陆慧林  刘文铁  赵云华 《化工学报》2003,54(8):1065-1071
基于稠密气体分子运动论和颗粒动力学,考虑多组分颗粒中颗粒组分与颗粒组分、颗粒组分内颗粒之间的相互作用以及气体与颗粒之间的相互作用,提出多组分颗粒非等温颗粒气固两相流动模型.以颗粒压力、径向分布函数、黏度、颗粒碰撞耗散等耦合各颗粒组分间和颗粒间的相间作用.采用大涡模拟方法模拟气相湍流流动.提出了多组分颗粒的径向分布函数计算方法.对循环流化床上升管中双组分颗粒气固两相流动特性进行了数值模拟,模拟结果揭示了上升管中双组分颗粒气固两相流动的环-核流动结构,得到了平均颗粒粒径的轴向和径向分布规律,计算结果与文献中实验结果相吻合.  相似文献   

2.
采用直接模拟蒙特卡罗方法(DSMC)模拟颗粒间的碰撞,用Lagrangian方法计算颗粒的运动.采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流.数值模拟垂直管道内气固两相上升流动,对管内气相速度和颗粒相速度、浓度,以及聚团流动进行分析,得到气固两相上升流中颗粒流动的有关信息.  相似文献   

3.
采用直接模拟Monte Carlo方法法DSMC)模拟颗粒间的碰撞,采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流.单颗粒运动满足牛顿第二定律,颗粒相和气相相间作用的双向耦合由牛顿第三定律确定.数值模拟垂直管内气固两相上升流动,对管内气相速度和颗粒相速度、浓度以及聚团流动进行分析.研究平均单个颗粒团聚物的存在时间、颗粒团聚物的时间份额和颗粒团聚物的生成频率分布特性,模拟结果与文献的实验结果基本吻合.  相似文献   

4.
采用颗粒动理学方法,考虑颗粒速度脉动各向异性,建立颗粒相二阶矩模型。应用初等输运理论,对三阶关联项进行模化和封闭。考虑颗粒与壁面之间的能量传递和交换,建立颗粒相边界条件模型。数值模拟鼓泡流化床内气固两相流动特性,模拟结果表明鼓泡流化床内颗粒相湍流脉动具有明显的各向异性。预测颗粒速度与Muller等和Yuu等实测结果相吻合。预测颗粒脉动速度二阶矩与Muller等实验结果变化趋势相同。统计得到的固相雷诺应力型二阶矩与Muller等实测颗粒脉动速度二阶矩和Yuu等实测颗粒脉动速度相吻合。  相似文献   

5.
采用涡耗散概念(EDC)模型,对某化工厂的GSP气化炉内多相反应流场进行了数值模拟研究.计算中采用Realizable k-ε湍流模型对雷诺平均后的N-S方程进行封闭;采用离散相随机轨道模型来模拟气化炉内煤颗粒的弥散运动;采用P1模型对燃烧的辐射传热进行模拟.计算结果表明:气化炉内为强旋射流流场,颗粒在气化炉顶部回流区...  相似文献   

6.
王志杰  赵彦琳  姚军 《化工进展》2021,40(12):6479-6489
基于计算流体动力学(CFD)方法,采用大涡模拟(LES)和拉格朗日颗粒追踪技术计算了Rushton涡轮搅拌槽内流场特性及三种St颗粒的运动行为。平均流场(切向速度、轴向速度和径向速度)、颗粒速度及浓度分布方面与实验值的吻合度较好,验证了数值模拟的可靠性。结果表明,搅拌流场及颗粒运动均呈现循环流特性,当转速N=313r/min不变时,St=0.24的小颗粒几乎实现了均匀分布;而St=37.3的大颗粒与流体的跟随性较差,底部沉积率较高,容器顶部会出现一定的颗粒空白区。叶轮附近产生一系列的湍流涡结构,并且由于剧烈的颗粒-壁面碰撞,该位置颗粒拟温度最高;小颗粒(St=0.24)的运移主要受叶片后方尾涡的控制,均匀分布在低涡量区;而大颗粒(St=37.3)由于具有较大的惯性,运动不再由涡主导,很快被叶轮甩向边壁,穿过了尾涡所形成的高涡量区,故而叶轮对附近大颗粒的搅拌效果较差。  相似文献   

7.
流化床内颗粒旋转会影响颗粒相的流动特性,目前在流化床数值模拟中普遍采用的颗粒动力学模型却没有考虑颗粒的旋转效应。今运用基于颗粒动力学理论的欧拉-欧拉气固多相流模型,考虑颗粒旋转流动对颗粒碰撞能量交换和耗散的影响,提出了考虑颗粒旋转效应的颗粒动力学模型以及颗粒相守恒方程,数值模拟提升管内气体颗粒两相流动特性。计算结果表明提升管内中心区域为低浓度-高速的颗粒上升流动、壁面区域为高浓度-低速的颗粒下降流动。分析了颗粒粗糙度系数对颗粒相能量耗散、颗粒平动温度和黏度的影响。随着颗粒粗糙度系数的增加,颗粒碰撞能量耗散先逐渐增加后减小。颗粒平动温度和黏度的变化趋势是相反的,表明颗粒旋转产生摩擦将导致颗粒旋转脉动能量的改变,影响提升管内气体-颗粒两相宏观流动特性。  相似文献   

8.
根据某公司4000 t/d水泥熟料生产线热工参数测定结果,运用计算流体力学(CFD)数值模拟对其NST分解炉内气流场、煤粉/气流两相流场及其燃烧状态进行分析.其中,对连续相、颗粒相的计算分别采用k-ε双方程湍流模型和离散相模型;对离散相与湍流之间的相互作用采用随机跟踪模型.燃烧计算则采用有限速率/涡耗散模型.模拟结果表...  相似文献   

9.
分解炉内气固两相流动特性的数值模拟   总被引:4,自引:0,他引:4  
采用Eulerian—Eulerian气固两相双流体模型、大涡模拟方法模拟气相湍流流动、颗粒动力学理论模拟颗粒相流动,数值模拟分解炉内气固两相流体的动力特性。用小波分析方法研究分解炉内气固两相湍流特性。在分解炉中心区域形成高浓度-高速度的上升颗粒流、在壁面区域形成高浓度、低速度的下降颗粒流,构成颗粒的内循环流动。  相似文献   

10.
在颗粒动理学理论(KTGF)的基础上,通过引入表征粗糙颗粒摩擦和切向非弹性的切向弹性恢复系数β,以及综合反映颗粒平动和旋转运动脉动强度的颗粒拟总温e0,结合输运理论建立了考虑颗粒旋转作用的颗粒相质量、动量和颗粒拟总温守恒方程。并在求解了同时具有平动和旋转运动的能量耗散和颗粒相应力等参数的前提下提出了颗粒相压力、剪切黏度和能量耗散等本构关系式以及边界条件,最终得出了粗糙颗粒动理学理论(KTRS)。通过改变液相的流变特性,分析了幂律流变模型中流动指数n和稠度系数Kl对流化床内流固两相流动特性的影响,模拟结果表明:随着流动指数和稠度系数的增大,液相湍动能耗散率逐渐增大,而颗粒相压力逐渐减小,颗粒旋转先增大后减小。  相似文献   

11.
基于气体分子动理学和颗粒动理学理论,考虑颗粒旋转流动对颗粒碰撞能量交换和耗散的影响,建立粗糙颗粒动理学。采用Chapman-Enskog颗粒速度分布函数,提出了颗粒相应力、热通量和颗粒碰撞能量耗散计算模型。采用欧拉-欧拉气固双相流模型,数值模拟鼓泡流化床内气体-颗粒两相流动特性。模拟结果得到了床内颗粒相速度和脉动速度分布,与Yuu等实验结果相吻合。分析不同的切向弹性恢复系数对颗粒相拟总温的变化规律,结果表明在低颗粒浓度时颗粒拟总温随切向弹性恢复系数而增加。  相似文献   

12.
1 INTRODUCTION Spout-fluid beds have been of increasing interest in the petrochemical, chemical and metallurgic indus-tries since spout-fluid beds can reduce some of the limitations of both spouting and fluidization by su-perimposing the two type of systems[1―4]. In recent years, spout-fluid beds have become an alternative for gas/solid contactors in coal gasification. Spout-fluid bed coal gasifiers have been adopted for APFBC-CC (advanced pressurized fluidized bed combus-tion-combined…  相似文献   

13.
Numerical simulations of gas-particles flow in a bubble fluidized bed with two large eddy simulations of gas and solid phases are presented. For gas phase and solid phase, the sub-grid scale model for the viscosity is based on the Smagorinsky form. The sub-grid model for the particle pressure proposed by Igci et al. (2008) is modified by replacing the minimum fluidization velocity. The collisional interaction of particles is considered by the kinetic theory of granular flow. Flow behavior of gas and particles is performed by means of these two sub-grid scale models. The subgrid closure for the particle phase viscosity and pressure led to a qualitative change in the simulation results. Predictions are compared with experimental data measured by Yuu et al. (2000) and Taghipour et al. (2005) in the bubbling fluidized beds. The distributions of concentration and velocity of particles are predicted in the bubbling fluidized bed. The predicted filtered particle phase pressure increases and the filtered particle phase viscosity decreases with the increase of particle concentration. The qualitative importance of the model constant cs of particles is demonstrated.  相似文献   

14.
A kinetic–frictional model, which treats the kinetic and frictional stresses in an additive manner, was incorporated into the two fluid model based on the kinetic theory of granular flow to simulate three dimensional flow behaviors of dense phase pneumatic conveying of pulverized coal in horizontal pipe. The kinetic stress was modeled by the kinetic theory of granular flow, while the friction stress is from the combination of the normal frictional stress model proposed by Johnson and Jackson [1987. Frictional–collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics 176, 67–93] and the modeled frictional shear viscosity model proposed by Syamlal et al. [1993. MFIX documentation and theory guide, DOE/METC94/1004, NTIS/DE94000087. Electronically available from http://www.mfix.org], which was modified to fit experimental data. For the solid concentration and gas phase Reynolds number was high, the gas phase and particle phase were all treated as turbulent flow. The experiment was carried out to validate the prediction results by three kinds of measurement methods. The predicted pressure gradients were in good agreement with experimental data. The predicted solid concentration distribution at cross section agreed well with electrical capacitance tomography (ECT) image, and the effects of superficial velocity on solid concentration distribution were discussed. The formation and motion process of slug flow was demonstrated, which is similar to the visualization photographs by high speed video camera.  相似文献   

15.
水平管加压密相煤粉气力输送数值模拟   总被引:2,自引:1,他引:1  
针对加压密相气力输送,对现有的颗粒静摩擦力模型进行适当修正,并将其与颗粒动理学理论相结合,建立了可以描述加压密相气力输送的气固湍流流动状况的多相流模型。该模型充分考虑了颗粒间碰撞和摩擦力作用,以及气相和颗粒团湍流脉动之间的相互作用。采用该模型对水平管内加压密相气力输送进行了三维数值模拟研究,模拟得到了气相和固相的速度、浓度和湍流强度分布,以及压降梯度的变化规律,再现了颗粒沉积层的形成和运动的动态过程。并进行了加压密相煤粉气力输送试验研究,预测的压降梯度与试验测量结果相符合。  相似文献   

16.
提升管内气固流动特性的离散元模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
采用离散单元法模型对二维提升管内气固流动特性进行了数值模拟。利用标准k-ε模型模拟气相的湍流流动,考虑了颗粒间的van der Waals力和滚动摩擦的作用。通过对颗粒和气体流动行为的分析,得到了颗粒浓度、速度、温度及气体速度等的分布,研究了表观气速和颗粒循环速率对颗粒流动的影响。结果显示:颗粒在提升管内呈现边壁浓、中心稀的环核流动及上稀下浓的流动结构;气固两相都存在一定程度的返混现象;增加表观气速,使颗粒浓度降低、速度增大,颗粒分布更均匀;增加颗粒循环速率,使颗粒浓度增大,而颗粒速度对颗粒循环速率的变化不敏感,颗粒分布的不均匀性更强。模拟结果与文献中实验定性吻合。  相似文献   

17.
范宝春  姜孝海  李洁 《化工学报》2004,55(8):1256-1261
在水平激波管中,研究激波与堆积粉尘的相互作用,并通过带示踪粒子的X射线和阴影摄影,记录堆积粉尘内外流场的波系结构.引入“粒化温度”,基于稠密气体分子动力学的思路导出堆积粉尘的守恒方程和本构方程,利用AUSM+格式对激波与堆积粉尘相互作用现象进行了数值模拟.计算结果与实验结果基本相符.  相似文献   

18.
Flow behavior of gas and particles is simulated in a 2-D chemical-looping combustion (CLC) process with two interconnected fluidized beds. A Eulerian continuum two-fluid model is applied for both the gas phase and the solid phase. Gas turbulence is modeled by using a k-ε turbulent model. The kinetic stress is modeled using the kinetic theory of granular flow, while the friction stress is from the combination of the normal frictional stress model proposed by Johnson and Jackson (1987) and the frictional shear viscosity model proposed by Schaeffer (1987) to account for strain rate fluctuations and slow relaxation of the assembly to the yield surface. Instantaneous and local velocity, concentration of particles and granular temperature are obtained. Predicted time-averaged particle concentrations and velocities reflect the classical core-annular flow structure in the air reactor. Flow behavior of bubbles is predicted in the fuel reactor and pot-seal. Computed leakage qualitatively agrees with experimental data in the fuel reactor and pot-seal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号