首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了玉米芯生产低聚木糖的脱色工艺。采用由木聚糖酶和纤维素酶组成的复合酶对玉米芯进行水解生产低聚木糖,通过活性炭对低聚木糖提取液脱色工艺进行优化。结果表明,低聚木糖活性炭脱色的最佳工艺条件为:温度为40℃,脱色时间30 min,活性碳添加量20%,可溶性总糖含量11 mg/m L。产品脱色率可达68.93%,还原糖损失率为34.75%,脱色后的低聚木糖溶液经乙醇沉淀后制备低聚木糖,得率为11.58%。  相似文献   

2.
采用静态吸附法对比研究了AB-8,HPD-100,D101,DM301,DM130和活性炭对玉米芯低聚木糖的脱色效果,筛选最佳脱色剂并对其脱色工艺进行研究。结果表明,玉米芯低聚木糖脱色最佳工艺条件为选择AB-8为脱色剂,脱色温度为40℃,脱色时间2 h,AB-8添加量为6%,可溶性总糖含量10.6 mg/mL。在此优化条件下,脱色率可达73.65%,还原糖损失率为15.19%,脱色后的低聚木糖溶液经乙醇沉淀后制备低聚木糖,得率为15.7%。  相似文献   

3.
采用混合离子交换树脂对玉米芯低聚木糖提取液脱盐脱色工艺进行优化,并利用薄层层析和高效液相色谱对提取的玉米芯低聚木糖组分进行分析。结果表明,玉米芯低聚木糖混合离子交换树脂脱盐脱色最佳工艺为:D301和001×7离子交换树脂混合比例1:1,反应温度50℃,反应时间120 min,还原糖浓度为0.570 mg/m L,p H5.0,在该条件下低聚木糖溶液的脱盐率为98%,脱色率为76%,还原糖保留率为65%。组分分析表明,玉米芯低聚木糖提取液中主要为木糖、木二糖、木三糖和木四糖,经混合离子交换树脂脱盐脱色后各成分的保留率分别为21.3%、31.4%、5.3%、3.8%。  相似文献   

4.
以玉米芯为研究对象,通过一系列单因素实验、正交试验和方差分析的方法,着重对低聚木糖转化工艺条件、低聚木糖脱色工艺条件和醇沉工艺条件进行了研究,研究结果表明:低聚木糖转化的最佳工艺条件为调整木聚糖溶液浓度为11%,调pH为5.5,加入木聚糖酶500 IU/g,在52℃条件下酶解8 h;低聚木糖脱色的最佳工艺条件为调整可溶性糖的含量为13%,加入35%的活性炭,30℃条件下处理40 min;通过控制不同乙醇浓度沉淀低聚木糖,得出无水乙醇醇沉效果最佳。在上述工艺条件下制备的低聚木糖产品中,XOS2-7含量达到72.5%,XOS2-4含量达到55.6%。  相似文献   

5.
利用活性炭结合阴阳离子交换树脂吸附技术研究甘蔗渣制备低聚木糖溶液的脱色脱盐工艺,并采用高效液相色谱分析精制后的低聚木糖溶液组分。结果表明:活性炭对低聚木糖溶液最佳脱色工艺为活性炭添加量质量分数1%、反应温度60 ℃、吸附时间1 h,在该条件下溶液脱色率为80.25%、还原糖保留率为98.70%。通过对7 种不同型号的树脂进行筛选,确定选用001×7和D301树脂串联、V(001×7)∶V(D301)=2∶1、流速254 mL/h时,离子交换树脂对低聚木糖脱盐效果最佳。经过活性炭和离子交换树脂共同脱色脱盐,低聚木糖溶液的最终脱色率为92.4%、脱盐率为79.2%,溶液接近中性(pH 7.4)。高效液相色谱法分析确定低聚木糖水解得到的单糖主要为木糖,还含有少量的甘露糖和葡萄糖,其中木糖占所有单糖的88.9%;低聚木糖溶液主要为木二糖和木三糖,还含有少量的木糖和木五糖。  相似文献   

6.
低聚木糖液脱色工艺研究   总被引:3,自引:0,他引:3  
研究了木聚糖酶水解爆破秸秆制备得到的低聚木糖液的脱色工艺,结果表明:在pH3.0、50℃下保持一段时间,酸析脱色率可达40%以上;在实验的九种活性炭中,AC5脱色效果最好,在80℃、pH3.0、160r/min、活性炭添加量为20%(w/w,对固形物)、底物固形物含量为30%的条件下脱色60min,脱色率可达81.87%;酸析后添加活性炭脱色比活性炭直接脱色效果好,当活性炭添加量为15%时,脱色率达88%.  相似文献   

7.
以玉米芯为原料,采用超声波辅助复合酶法制备低聚木糖。在单因素试验的基础上,通过正交试验对超声波辅助复合酶法制备玉米芯低聚木糖工艺进行优化。结果表明,低聚木糖的最佳制备工艺条件为超声温度60℃,超声功率300 W,由木聚糖酶和纤维素酶按照3:2的比例组成复合酶添加量1.0%,酶解20 min,料液比为1:15(g/mL)。在此条件下,酶解液中以玉米芯计还原糖含量为43.61 mg/g,可溶性总糖含量为75.01 mg/g,平均聚合度为1.72。  相似文献   

8.
离子交换树脂对玉米芯低聚木糖脱色脱盐工艺研究   总被引:1,自引:0,他引:1  
采用阳阴离子交换树脂串联法对玉米芯低聚木糖提取液进行脱色脱盐工艺研究,并利用薄层层析和高效液相色谱对制备的低聚木糖进行组分分析。结果表明,阳离子树脂001×7与阴离子树脂D301串联脱色脱盐效果好,最佳工艺为:温度40℃,时间60 min,阳阴离子树脂比例为1:2,初始还原糖浓度为0.938 mg/m L,p H6.0,在该工艺条件下,脱色率和脱盐率分别为98.8%和68.1%,还原糖保留率为67.3%。组分分析表明,玉米芯低聚木糖提取液中主要为木糖、木二糖、木三糖和木四糖,提取率分别为4.6%、3.7%、0.3%、6.0%,经离子交换树脂脱色脱盐后保留率分别为99.2%、45.5%、6.0%、24.9%。  相似文献   

9.
为提高玉米芯中低聚木糖的得率,试验以玉米芯为原料,研究酶法提取低聚木糖的最优工艺条件,对底物浓度、加酶量、酶解温度、酶解时间4个因素分别进行单因素试验,根据单因素试验结果设计BoxBenhnken中心组合试验,以还原糖含量为指标值,采用响应面分析法确定提取低聚木糖的最优工艺参数,并通过HPLC进行水解产物的分析。结果表明:最优工艺条件为底物浓度3%,加酶量40 m L/g(底物),50℃时酶解5 h所得的低聚木糖含量为3.86 mg/m L。水解产物经HPLC分析后发现其中含有较高的木二糖、木三糖等低聚木糖组分,低聚木糖(木二~木五)的相对含量达68.1%,说明优化后的酶法提取工艺能够较好的制备低聚木糖。  相似文献   

10.
絮凝脱色在低聚木糖分离纯化中的应用   总被引:12,自引:0,他引:12  
研究了 5种絮凝剂对低聚木糖水解液絮凝脱色效果的影响。结果表明 ,微生物絮凝剂NOC 1在用量为 2 0mg/L ,pH 6 5 ,温度 80℃及 5 0mmolAl3+ /L存在时 ,可除去约 86%的色素。利用絮凝结合活性炭脱色比单纯用活性炭脱色低聚木糖的损失减少约 83 9% ,活性炭用量减少 90 %。利用絮凝脱色生产的产品外观达到日本同类产品的水平 ,且产品中低聚木糖含量高于日本同类产品。  相似文献   

11.
以玉米芯为原料,用稀酸进行预处理,再利用复合酶水解制备低聚木糖,通过单因素和正交实验确定酸-复合酶法制备玉米芯低聚木糖的最佳工艺。结果表明:酸预处理的最佳条件为:硫酸的浓度为2.5 g/L,在120℃下,玉米芯和稀硫酸按1:6的料液比预处理90 min;复合酶水解的最佳条件为:木聚糖酶和纤维素酶按1:1配比组成复合酶,复合酶的添加量为2%,最适pH为5.0,在50℃下酶解时间为15 min。在该条件下,玉米芯水解液中可溶性总糖为110.24mg/g,还原糖含量为63.72 mg/g,平均聚合度为1.73。  相似文献   

12.
研究低聚木糖水解液分别经过酸析脱色和活性炭脱色,旋转蒸发仪浓缩纯化处理,得到纯度较高的低聚木糖产品。通过对酸析和改性活性炭脱色条件优化,得到的优化脱色条件是:酸析脱色pH3.0,脱色温度50℃;活性炭用量是10%(w/v,活性炭/溶液),初始pH值是3.0,脱色温度是80℃,脱色时间是100min,此时的脱色了为55.06%。两种方法结合脱色率是68.96%。用旋转蒸发仪将经过脱色处理的低聚木糖水解液进行浓缩,并辅以乙醇继续浓缩得到浓缩糖浆,其中的低聚木糖含量达到32.08%(w/w,低聚木糖对固形物)。  相似文献   

13.
低聚木糖是水解木聚糖得到的一种功能性的木寡糖。以玉米芯为原料,利用复合酶制剂酶解玉米芯制备低聚木糖,对复合酶制剂的组成配比进行了正交试验确定复合酶制剂中阿魏酸酯酶、漆酶和木聚糖酶最佳配方分别是0.2%、0.3%和0.6%。添加复合酶制剂至料液比为1∶20(g∶mL),在最适温度为50℃,酶解4 h后,低聚木糖的含量达到16.8 g/L。与单一酶制剂木聚糖酶的作用相比,低聚木糖的含量提高了64.7%。  相似文献   

14.
响应面法优化低聚果糖液脱色工艺   总被引:1,自引:0,他引:1  
以粉末活性炭对酶法生产的低聚果糖溶液进行吸附脱色,研究活性炭的用量、脱色温度及脱色时间对脱色效果的影响。在单因素试验的基础上,利用响应曲面法对低聚果糖溶液脱色进行优化。得到最佳工艺条件为活性炭的用量22g/L、脱色温度60℃、脱色时间30min,在此条件下低聚果糖溶液的脱色率达79.16%。  相似文献   

15.
研究旨在探讨活性炭对木质纤维水解液全细胞原位催化制取木糖酸产品的脱色精制技术与工艺条件。在单因素实验基础上,采用正交实验,以脱色率(%)和木糖酸回收率(%)为指标,分别用紫外-可见分光光度法和高效阴离子交换色谱测定研究并确定脱色的最优工艺参数。结果表明:粉状活性炭对秸秆稀酸水解液所制取的木糖酸产品液均具有选择性的吸附功能,对色素杂质的吸附脱除率明显高于对木糖酸的吸附率。C3对木糖酸产品的选择性脱色精制效果最佳。C3活性炭添加量对脱色效果的影响最大,其次为时间和温度,最适脱色工艺条件为:活性炭添加量20%、脱色温度60℃、吸附时间40 min,脱色率达到99.74%,木糖酸回收率可保持90.05%。这说明采用C3粉状活性炭对木糖酸进行脱色和产品精制的技术可行,且快速简便。   相似文献   

16.
优化酶解处理油茶籽壳制备低聚木糖的工艺条件。以油茶籽壳为原料,经碱法制备木聚糖粗提液。以所得的木聚糖粗提液为原料,低聚木糖浓度为考核指标,酶解温度、木聚糖酶使用量、酶解时间和木聚糖底物浓度为变量因子,进行单因素试验。在单因素试验基础上,利用响应面法对酶法制备低聚木糖工艺进行优化研究。结果表明,最佳的制备工艺为:酶添加量5%、酶解时间10 h、酶解温度49℃、底物浓度2%。在此优化酶解工艺条件下,测得低聚木糖浓度为11.63 g/L,比未优化前提高4.63 g/L。试验所得到的酶解处理油茶籽壳制备低聚木糖的工艺条件具有实用价值,能为提高利用油料加工副产物油茶籽壳的附加值提供理论依据。  相似文献   

17.
低聚木糖分离纯化的研究   总被引:2,自引:0,他引:2  
利用Freundlich吸附等温方程对活性炭和阴离子交换树脂的色素吸附效能进行了评价,选择活性炭Ly-T-ac和离子交换树脂D-301作为低聚木糖液中色素的吸附剂。通过单因素实验确定了低聚木糖液的活性炭脱色条件为:温度80℃,pH5.0,活性炭用量4%,脱色时间1.5h,活性炭对糖液的脱色率为81.40%。阴离子交换树脂D-301在9%用量,温度40℃脱色2.5h下对糖液的脱色率为40.50%。低聚木糖糖液经过阴阳离子交换树脂脱盐处理后,脱盐率为65.65%。  相似文献   

18.
利用Freundlich吸附等温方程对活性炭和阴离子交换树脂的色素吸附效能进行了评价,选择活性炭Ly-T-ac和离子交换树脂D-301作为低聚木糖液中色素的吸附剂。通过单因素实验确定了低聚木糖液的活性炭脱色条件为:温度80℃,pH5.0,活性炭用量4%,脱色时间1.5h,活性炭对糖液的脱色率为81.40%。阴离子交换树脂D-301在9%用量,温度40℃脱色2.5h下对糖液的脱色率为40.50%。低聚木糖糖液经过阴阳离子交换树脂脱盐处理后,脱盐率为65.65%。   相似文献   

19.
目的:以甘蔗糖蜜为原料,研制一款新型调味料酒。方法:采用单因素试验探究糖蜜发酵酒的最佳酒母醪配方,并以此配方用5 L发酵罐制备糖蜜发酵酒为酒基,采用正交试验优化活性炭最佳脱色工艺条件,再用单因素试验确定调味剂的最佳添加比例。结果:糖蜜发酵酒的最佳酒母醪配方为初糖质量浓度200 g/L、(NH42SO4添加量1.0 g/L、玉米浆添加量10 g/L、MgSO4添加量0.2 g/L、NaCl添加量0.5 g/L、KH2PO4添加量0.5 g/L、CaO添加量0.2 g/L;最佳脱色工艺条件为活性炭添加量2%,脱色时间30 min,脱色温度55 ℃;调味剂的最佳添加比例为食用盐1.5 g/100 mL,味精0.4 g/100 mL,混合香辛料0.06%。结论:利用甘蔗糖蜜酿造料酒工艺可行,制备的糖蜜料酒清亮透明,香气协调,口味鲜爽,其理化指标与微生物指标符合调味料酒行业标准(SB/T 10416—2007)对新型调味料酒的要求。  相似文献   

20.
以雪莲果为原料,用超声辅助提取低聚果糖,由单因素试验和正交试验确定的最佳提取工艺参数为提取时间3h、提取温度85℃、超声时间5min、料液比1:10(g/g)。在此条件下,多糖的提取率为4.257%。由单因素试验和正交试验确定的最佳脱色工艺参数为活性炭添加量2%,脱色温度80℃,脱色时间50min,脱色pH3.5。在此条件下所得脱色液的透光率为97.86%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号