首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本实验以白刺果为原料,采用单因素结合响应面法对微波超声协同提取白刺果原花青素工艺进行优化,并以DPPH自由基清除率、ABTS自由基清除率、羟自由基和总还原能力评价其抗氧化活性。结果表明,乙醇浓度、液料比、微波时间和超声温度对白刺果原花青素得率的影响明显,优化后的工艺条件为乙醇浓度65%,液料比14.5 mL/g,微波时间2 min,超声温度50 ℃,白刺果原花青素得率平均值为(17.289±0.402)mg/g,与理论预测值相差2.4%,说明由该模型优化的最佳提取工艺条件稳定可靠,具有实际应用价值。利用大孔树脂对提取物进行纯化后的纯度达到81.4%。体外抗氧化试验结果表明,白刺果原花青素不仅具有良好的还原能力,对ABTS自由基和DPPH自由基均具有较强的清除能力,IC50分别为0.261 mg/mL和0.159 mg/mL,对羟自由基也具有一定的清除能力,IC50为0.712 mg/mL。因此,微波超声协同能够明显地提高提取效率,且白刺果原花青素具有较强的体外抗氧化活性,为全方位利用白刺资源提供科学参考。  相似文献   

2.
以陕产瞿麦挥发油得率作评价指标,在单因素实验基础上,应用响应曲面法,优选出了微波辅助提取陕产瞿麦中挥发油的最佳工艺,并对其抗氧化性进行研究。结果表明,微波辅助提取挥发油的最佳工艺为:微波功率500 W,液料比20:1 mL/g,提取温度46℃,在此条件下得到的挥发油得率达3.19%±0.46%,与模型预测值3.27%基本相符,说明该模型合理可靠。体外抗氧化试验表明:微波法提取的挥发油和同等条件下超声法(功率120 W)提取的挥发油对DPPH·和O2-·清除能力呈较好的量效关系。微波法和超声法提取的挥发油在实验浓度范围内对DPPH·自由基清除的IC50值分别为0.82、0.73 mg/mL,对超氧阴离子自由基清除的IC50值分别为0.68、0.81 mg/mL,说明陕产瞿麦中挥发油具有一定的抗氧化活性,不同的提取方法得到的挥发油对不同自由基的清除能力略有不同。  相似文献   

3.
目的:开发香菇柄多糖的工业化生产。方法:以多糖得率为指标,采用均匀设计试验优化提取工艺,采用4种方法测定多糖抗氧化活性并与传统的热水浸提法进行比较。结果:闪式辅助热水浸提法提取香菇柄多糖最优工艺条件为闪式提取时间120 s,液料比(V去离子水∶m香菇柄)40∶1 (mL/g),热水浸提时间105 min,温度50℃,提取两次,此条件下多糖得率为(5.03±0.22)%,与模型预测值基本一致,是传统热水浸提法的1.82倍;香菇柄多糖具有较强的Fe3+还原能力、总抗氧化能力、羟自由基和DPPH自由基清除能力,且呈量效关系;闪式辅助热水浸提法所得多糖抗氧化活性强于传统热水浸提法。结论:闪式辅助热水浸提有利于香菇柄多糖提取,且能保持其抗氧化活性。  相似文献   

4.
采用微波辅助提取法、超声辅助提取法、热水提取法、酶提法提取香菇多糖(polysaccharide of Lentinus edodes,LEP),获得4种相应的多糖。利用傅里叶红外光谱仪和高效阴离子交换色谱分析对4种多糖进行结构表征,并以提取得率和抗氧化活性为依据,筛选最优方法。结果显示4种多糖单糖组分基本相同,但摩尔比有明显差异。提取得率影响顺序为超声提取多糖微波提取多糖酶提取多糖热水浸提多糖。在4种多糖中,微波提取多糖含量最高(43.17%),远高于其他3种多糖,且蛋白质含量最低(3.31%)。抗氧化试验结果表明,微波提取多糖的羟自由基清除力最高,DPPH自由基清除力和还原力与其他多糖活性相当。综合考虑提取得率、多糖含量和抗氧化活性,微波提取为最优方法。  相似文献   

5.
目的:研究白及多糖的超声-微波协同提取工艺优化及其抗氧化活性。方法:以多糖得率为考察指标,通过单因素实验对料液比、浸泡时间、微波功率和协同提取时间4个影响因素进行考察,采用正交实验设计对超声波-微波协同提取白及多糖的工艺条件进行优化,并研究白及多糖对羟基自由基(·OH)、超氧阴离子(O_2~-·)和1,1-二苯基-2-苦肼基自由基(DPPH·)的清除率以评价其体外抗氧化活性。结果:最佳提取工艺条件为:液料比20∶1 m L/g,浸泡时间6 min,微波功率200 W,协同提取时间5 min,该工艺条件下多糖得率达6.98%±0.19%。单独超声波提取法和单独微波提取法的多糖得率仅为超声-微波协同提取法的46.28%和87.96%,表明超声-微波协同提取优于单独超声波提取和单独微波提取。抗氧化活性研究表明在实验范围内,白及多糖对O-2·无明显清除作用,但对·OH和DPPH·具有明显的清除作用,采用超声-微波协同提取法提取的白及多糖较微波提取法具有更高的·OH和DPPH·清除活性,当多糖浓度为0.5 mg/m L时,对·OH和DPPH·清除率分别为92.82%和74.21%。结论:超声-微波协同提取具有省时高效的特点,特别适用于多糖类物质的提取。  相似文献   

6.
为筛选适宜的芒果核仁多酚提取方法,分别采用超声辅助提取法和热回流提取法制备芒果核仁多酚,在单因素试验的基础上,通过响应面法优化两种方法的工艺参数,探究提取方法对多酚得率的影响;利用清除1,1-二苯基-2-苦肼自由基(DPPH·)、2,2-联氨-双-3-乙基苯并噻唑啉-6-磺酸二铵盐阳离子自由基(ABTS+·)、超氧阴离子(O2-·)和羟自由基(·OH)的能力评价所得粗多酚的抗氧化活性。结果表明,超声辅助提取法的芒果核仁多酚提取得率较高,其最佳提取溶液为60%乙醇,其最佳工艺为超声时间30 min,超声功率200 W,超声温度79℃,液料比38∶1(mL/g),该条件下多酚提取得率为11.62%;体外抗氧化试验表明,超声辅助提取法所得芒果核仁多酚对DPPH·、ABTS+·、O2-·和·OH的半清除浓度(IC50)分别为0.02、0.24、592.98 mg/mL和38.76 mg/mL,清除能力均强于热回流提取法所得芒果核仁多酚;此外,超声辅助提取法具有省时和成本低的特点。  相似文献   

7.
以荷叶为原料,探讨闪式提取法提取荷叶黄酮的最佳工艺及其抗氧化作用。在单因素试验的基础上,选取液料比、乙醇浓度、提取时间为自变量,以荷叶黄酮得率为响应值,较为系统地研究了各因素及其交互作用对荷叶黄酮得率的影响,并通过对荷叶黄酮总还原能力及DPPH自由基清除能力的测定来评价其抗氧化活性。结果表明,利用闪式提取法提取荷叶黄酮的最佳工艺为:液料比21:1(m L/g)、乙醇浓度59%、提取时间30s。在此条件下时荷叶黄酮得率最高,平均值高达5.4993%,该法优于已有报道的其他提取法。抗氧化试验显示荷叶黄酮具有较强的总还原能力和DPPH自由基清除能力,表明其具有较强的抗氧化活性。  相似文献   

8.
为优化江永香菇多糖提取工艺,采用超声波细胞破碎辅以热水浸提,通过单因素试验考察超声时间、超声功率、料液比、浸提时间、浸提温度5个因素对香菇多糖得率的影响,以香菇多糖得率为响应值,采用响应面设计优化工艺,同时对提取的香菇多糖进行抗氧化活性研究。结果表明,提取的最佳工艺条件为:超声时间6 min、浸提温度78℃、浸提时间51 min。在此条件下,江永香菇多糖的得率可达到29.71%。超声波细胞破碎法辅以热水浸提得到的江永香菇多糖体外清除DPPH自由基能力的IC_(50)值为0.35 mg/mL,清除ABTS+自由基能力的IC_(50)值为1.76 mg/mL,相同浓度下,其DPPH自由基清除能力和ABTS~+自由基清除能力均高于热水回流法提取得到的江永香菇多糖。  相似文献   

9.
在单因素实验的基础上,通过正交实验优化了热回流提取莲房多酚的工艺,并通过测定其清除ABTS+自由基、DPPH自由基、OH自由基的能力,还原力,亚铁离子螯合活性及对大鼠脑匀浆脂质过氧化的影响,对莲房多酚的抗氧化活性进行综合研究。结果表明,热回流提取莲房多酚的最佳工艺参数为:乙醇浓度50%,料液比1∶25,提取温度80℃,提取时间为2h,最优条件下的得率是5.23%。莲房多酚的体外抗氧化实验表明莲房多酚对DPPH自由基、ABTS+自由基、OH自由基有很强的清除能力,对亚铁离子的螯合活性和还原力均较强,并能显著抑制大鼠脑匀浆脂质过氧化。本研究表明在该优化工艺下提取的莲房多酚具有较强的抗氧化活性。  相似文献   

10.
以紫山药为实验材料,对紫山药中原花青素超声辅助提取的最佳工艺条件进行研究,并对其体外抗氧化活性进行评价。在单因素实验基础上,以原花青素得率为响应值,采用响应面法对超声辅助提取工艺进行优化。结果表明,紫山药原花青素的最佳提取工艺:乙醇体积分数70%、超声时间30 min、液料比19∶1(m L/g)、提取温度59℃、超声功率220 W,此条件下,紫山药原花青素得率达92.47 mg/g。体外抗氧化实验结果表明,紫山药原花青素具有明显的抗氧化性,对DPPH自由基(DPPH·)和羟基自由基(·OH)半数抑制率浓度IC_(50)分别为0.182 mg/m L和0.289 mg/m L,清除能力和总还原力强于维生素C。超声辅助提取的紫山药原花青素具有良好的抗氧化性。  相似文献   

11.
研究了超声酶解提取蓝莓花青素及其抗氧化活性。在单因素试验基础上,采用Box-Behnken中心组合设计和响应面法优化超声酶解提取工艺参数。最佳提取工艺条件为:超声功率452 W,超声时间33 min,纤维素酶浓度0.1%,提取温度57℃。在最优提取条件下花青素提取得率为7.28%。通过超氧自由基(O2-·)、羟基自由基(·OH)和1,1-二苯基-2-苦肼基(DPPH·)清除能力进行了体外抗氧化活性评价,结果表明蓝莓花青素具有显著的抗氧化活性,且在试验的浓度范围(0.25~4.0 mg/m L)内,抗氧化活性与浓度呈线性依赖关系。这些结果表明,超声酶解是一种从蓝莓中提取花青素的高效方法,花青素可以探索作为潜在的天然抗氧剂应用于药品和功能食品。  相似文献   

12.
利用超声-微波协同处理优化花生红衣原花青素(peanut skin procyanidins,PSPc)的提取工艺,并评价其抗氧化活性。以预处理后的花生红衣为研究对象,超声-微波协同乙醇提取PSPc,在单因素(超声功率、超声时间、微波功率、微波时间、乙醇浓度、料液比、浸提温度)试验的基础上,利用Plackett-Burman(PB)试验设计筛选出影响PSPc提取量的显著因素,进一步采用响应面法对提取工艺进行优化;并且评价不同提取工艺对PSPc提取量和其抗氧化活性(DPPH自由基清除能力、羟自由基清除能力和铁离子还原/抗氧化能力)的差异性。结果表明:160 W超声10 min,240 W微波 90 s,70%乙醇、50 ℃浸提 20 min、料液比 1∶40(g/mL),在此条件下,PSPc的提取量可达到 186.38 mg/g,显著高于超声波辅助提取、微波辅助提取等其他方法(p<0.05),且有较好的抗氧化活性。  相似文献   

13.
采用超声-微波协同提取技术(UMAE)对菠萝蜜果皮中多酚的提取工艺进行优化,并对抗氧化活性进行了评价。以单因素实验为基础,根据Box-Behnken中心组合设计原理,选取乙醇体积分数、料液比、微波功率和微波时间4因素3水平进行响应曲面分析,建立多酚得率的二次多项数学模型,分析各因素的显著性和交互作用,得到多酚提取工艺的最佳条件为:乙醇体积分数70%、料液比1∶40、微波功率75 W、微波时间12 min,多酚得率为7.19 mg/g。在该条件下,超声-微波协同提取方法提取效率优于传统水浴回流法(1.04 mg/g)、微波辅助法(5.23 mg/g)和超声辅助法(5.89 mg/g)。抗氧化活性研究表明,菠萝蜜果皮多酚提取物对DPPH自由基和ABTS自由基均有较强的清除能力,呈量效关系,其EC50值分别为101.39μg/m L和106.60μg/m L,表明多酚是菠萝蜜果皮抗氧化活性的物质基础。  相似文献   

14.
目的:采用Box-Behnken法优化超声波-微波协同提取凤眼莲黄酮工艺,并对其进行抗氧化活性分析。方法:以超声波功率、微波功率、料液比和提取时间为主要影响因素,在单因素实验基础上,以黄酮得率为响应值,利用响应面实验优化凤眼莲黄酮的提取条件。通过对凤眼莲不同部位提取的黄酮进行总还原能力、清除DPPH自由基和清除超氧阴离子自由基能力的测定,对凤眼莲黄酮的抗氧化能力进行评价。结果:最佳提取工艺为超声波功率600 W,微波功率400 W,料液比1∶22 (g/m L),提取时间21 min,在此工艺条件下得到凤眼莲黄酮得率为3.64%±0.07%,回归模型的预测值与真实值相近,模型拟合程度较好。不同部位的黄酮类化合物抗氧化活性大小依次为叶根茎,清除DPPH自由基和超氧阴离子自由基的IC50分别为:凤眼莲叶0.569、0.389 mg/m L,凤眼莲根0.754、0.555 mg/m L,凤眼莲茎0.837、0.646 mg/m L。结论:响应面优化超声波-微波协同提取凤眼莲黄酮的工艺条件合理,效率较高,得到的黄酮具有良好的抗氧化能力,可进一步开发利用。  相似文献   

15.
采用溶剂萃取、超声辅助萃取和微波辅助萃取提取龙眼核中的多酚,比较萃取率以及其抗氧化活性的差异。分别采用溶剂萃取(回流法和浸提法)、超声辅助萃取和微波辅助萃取提取龙眼核中的多酚,采用Folin-Ciocalteus法测定多酚含量并计算提取率;测定并比较多酚的总抗氧化能力、对羟自由基和DPPH自由基的体外抗氧化能力。不同方法提取多酚含量差异明显,微波、回流、浸提和超声的提取率分别是(13.60±0.46)%、(9.85±0.76)%、(8.65±0.43)%、(12.04±1.69)%。不同方法提取的龙眼核多酚抗氧化活性各样差异,但总抗氧化能力大小差异不明显。龙眼核多酚对·OH清除能力依次为:IC_50超声IC_50微波IC_50回流IC_50浸提。龙眼核多酚对DPPH清除能力为:IC_50微波IC_50VCIC_50回流IC_50超声IC_50浸提。微波提取龙眼核多酚提取率最高,抗氧化效果最佳,且能有效地清除羟自由基和DPPH自由基,在一定范围内清除自由基能力和浓度成线性关系。  相似文献   

16.
以西藏芜菁为原料,研究复合酶辅助超声法提取芜菁中总黄酮的最佳工艺条件及其抗氧化活性。以总黄酮得率为考察指标,通过Plackett-Burman实验筛选出对得率影响最显著的三个因素:复合酶配比、料液比及超声功率。随后通过响应面法优化芜菁总黄酮的提取工艺,同时通过DPPH自由基和ABTS+自由基清除实验评估了芜菁总黄酮的抗氧化活性。结果表明,复合酶辅助超声法提取芜菁总黄酮的最佳工艺条件为:复合酶配比为1.9:1 g/g,复合酶用量为2%,料液比为1:38 g/mL,乙醇浓度为75%,酶解温度为50℃,酶解时间为55 min,超声功率为204 W,超声时间为60 min,在此条件下总黄酮得率达到最大值1.458%。抗氧化实验结果表明芜菁总黄酮对DPPH自由基清除的IC50为185.6 μg/mL,对ABTS+自由基清除的IC50为164.3 μg/mL,说明芜菁总黄酮具有体外抗氧化活性。综上,本研究得到了复合酶辅助超声法提取芜菁总黄酮的最佳工艺条件,且提取得到的芜菁总黄酮具有较强的抗氧化活性,为西藏芜菁的开发及利用提供了一定的科学依据。  相似文献   

17.
采用复合酶超声辅助提取法提取葚籽黄酮,并分析其抗氧化活性和抑菌活性。通过单因素实验和Box-Behnken响应面分析法考察不同生物酶比例、复合酶酶添加量、酶解温度、酶解时间和超声时间对黄酮得率的影响,检测提取物对DPPH自由基、羟自由基、超氧阴离子自由基的清除作用,并通过牛津杯法检测其抑菌活性。结果表明:最佳酶为2:1的果胶酶和纤维素酶组合的复合酶,最佳提取工艺条件为:复合酶添加量0.3 mg/mL、酶解温度55 ℃、酶解时间80 min、超声时间20 min。此条件下桑葚籽黄酮的提取得率为5.32 mg/g。提取所得黄酮具有较高的抗氧化活性,且抗氧化活性与黄酮质量浓度呈一定效量关系。桑葚籽黄酮对羟自由基的清除效果最强,当黄酮质量浓度为1.00 mg/mL时,其对DPPH自由基和羟自由基的清除率分别为 83.90%和87.27%,抗超氧阴离子自由基活力为165.51 U/L。桑葚籽黄酮对沙门氏菌、大肠杆菌、金黄色葡萄球菌和酵母菌均具有抑制作用,且最低抑制浓度分别为0.75、1.50、1.00和2.00 mg/mL。  相似文献   

18.
目的研究不同提取方法对松茸多糖(polysaccharide of Tricholoma matsutake,TMP)的理化性质及抗氧化活性的影响,并以提取得率和抗氧化活性为依据,筛选出最优方法。方法采用热水浸提、超声提取、酶提取和微波提取等4种提取方法,获得4种相应的多糖。利用高效阴离子交换色谱和傅里叶红外光谱对4种多糖的化学特性进行了结构表征。结果 4种多糖的提取得率顺序为热水浸提多糖超声提取多糖酶提取多糖微波提取多糖。在4种多糖中,超声辅助多糖含量最高(48.98%),蛋白含量最低(0.2%)。抗氧化试验结果表明,超声辅助多糖的还原力和·OH的清除力均高于其他3种多糖;从清除DPPH活性来看,超声辅助多糖和热水浸提多糖的EC_(50)分别为1.06和0.98 mg/mL,二者活性相当,均远高于其他2种多糖。结论综合考虑提取得率、多糖含量和抗氧化活性,超声提取为最优方法。4种多糖的单糖组分基本相同,但它们的摩尔比有明显不同。  相似文献   

19.
以野生阳荷为原料,采用微波-超声协同辅助提取阳荷中的多糖并优化其提取工艺,借助体外抗氧化模型对阳荷多糖进行抗氧化分析。响应面分析法优化得到阳荷多糖的最优提取工艺为:超声功率454 W,提取时间15 min,提取温度67℃,料液比1∶26(g/mL)。在此工艺条件下,阳荷多糖的最优得率为(10.40±0.35)%。体外抗氧化活性分析表明,阳荷多糖具有较强的清除DPPH·、ABTS+·、超氧阴离子自由基(O2-·)和羟基自由基(·OH)能力,其自由基清除活性随阳荷多糖浓度的增加而增强,证明阳荷多糖是一类优异的自由基清除剂。  相似文献   

20.
目的:通过微波-超声波联合辅助提取法优化笋壳多糖提取工艺,并研究其抗氧化活性。方法:考察提取时间、料液比、微波功率、超声波功率、提取次数对笋壳多糖含量的影响,在单因素试验基础上做L9(34)正交试验优化提取工艺参数,通过测定笋壳多糖清除羟自由基、超氧阴离子自由基、1,1-二苯基-2-苦基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基的能力来评价其抗氧化活性,并同传统热水浸提法进行比较。结果:微波-超声波联合辅助提取最优工艺条件为提取时间30 min、料液比1∶30(g/mL)、微波功率200 W、超声波功率750 W,笋壳多糖得率为2.76%,粗多糖中多糖含量为37.63%;清除羟自由基、DPPH自由基和超氧阴离子自由基的半抑制浓度分别为0.17、0.43 mg/mL和大于16 mg/mL。微波-超声波联合辅助提取法的各项指标均优于热水浸提法。结论:微波-超声波联合辅助提取笋壳多糖比传统热水浸提具有耗时短、效率高等优点,笋壳水溶性多糖具有显著体外抗氧化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号