共查询到20条相似文献,搜索用时 56 毫秒
1.
乙醇胺(MEA)吸收法是一种高能耗的碳捕获和固化(CCS)方法,其原因是解吸塔中胺的再生(100~120 ℃)以及CO2的压缩都需要较高能耗。本文介绍了一种新的活性热液相固化(rHLPD)方法,其将MEA吸收法碳捕获工艺与矿物碳化技术结合起来(rHLPD-CS)。结果表明,在较低的温度(60 ℃)下,矿物(硅灰石CaSiO3)碳化分离了MEA-CO2溶液中捕获的CO2,同时形成了抗压强度约为121 MPa的整体材料。这表明,使用rHLPD-CS技术不仅可以降低MEA-CO2中CO2的分离和压缩所消耗的能量,而且还可以使CO2形成增值产品,具有作为建筑和基础设施材料的潜力。 相似文献
2.
3.
以煤矸石为原料、水玻璃和NaOH为碱性激发剂合成矿物聚合物,以添加硫化物的矿物聚合物对Cr(Ⅵ)进行解毒与固化,对固化体进行了检测.结果表明,当硫化物与Cr(Ⅵ)的摩尔比大于3:1时,矿物聚合物中总铬的浸出浓度小于1 mg/L时,铬固化率大于99%,对Cr(Ⅵ)的最大固化量为1.2%.添加硫化物的矿物聚合物对Cr(Ⅵ)的解毒与固化是基于氧化还原反应,S2-被氧化为S2+(平均化合价),Cr(Ⅵ)被还原为Cr(Ⅲ),Cr(Ⅲ)被矿物聚合物中的-OAl(-)(OH)3吸引并固化在非晶质结构中. 相似文献
4.
以煤矸石为原料、水玻璃和NaOH为碱性激发剂合成矿物聚合物,以添加硫化物的矿物聚合物对Cr(Ⅵ)进行解毒与固化,对固化体进行了检测.结果表明,当硫化物与Cr(Ⅵ)的摩尔比大于3∶1时,矿物聚合物中总铬的浸出浓度小于1 mg/L时,铬固化率大于99%,对Cr(Ⅵ)的最大固化量为1.2%.添加硫化物的矿物聚合物对Cr(Ⅵ)的解毒与固化是基于氧化还原反应,S2-被氧化为S2+(平均化合价),Cr(Ⅵ)被还原为Cr(Ⅲ),Cr(Ⅲ)被矿物聚合物中的-OAl(-)(OH)3吸引并固化在非晶质结构中. 相似文献
5.
CO2排放量迅速增加,严重威胁人类生存环境及气候变化,如何减少碳排放量是关注热点。化学吸收法是捕集CO2的主要方法之一,其脱除CO2的实质是利用碱性吸收剂溶液与烟气中CO2逆向接触并发生化学反应,形成不稳定盐类,而盐类在一定条件下会逆向分解释放出CO2而再生,从而实现CO2从烟气中分离脱除。以醇胺溶液为吸收剂的化学吸收法技术开发相对成熟,且分离效果好、操作简单,在电力、钢铁、水泥、化工等行业得到广泛应用。醇胺溶液是化学吸收法的核心,目前应用于工业减排的醇胺溶液包括一级醇胺溶液、二级醇胺溶液、三级醇胺溶液以及空间位阻胺等。综述了4种典型的醇胺溶液和低浓度烟气吸收法胺液的国内外研究现状,介绍了国外三菱重工的KM-CDR工艺、壳牌康索夫脱硫脱碳工艺、陶氏化学Ucarsol溶剂的配套工艺、西门子氨基酸盐溶液的配套工艺、Powerspan的ECO2工艺,同时对阿尔斯通的富氧燃烧技术进行了总结;国内在碳捕集方面研究时间较短,在“双碳”计划推动下,... 相似文献
6.
以MEA化学吸收法为参考标准,通过对参考水泥厂进行适当的技改,对纯氧燃烧法、冷却氨水法、膜分离法及两种钙循环法进行CO2捕获技术评估。结果表明,在定义的条件下,这几种CO2捕获技术的CO2减排当量为73%~90%,CO2减排能耗为1.63~4.07 MJ/kg CO2,而MEA化学吸收法CO2减排当量为64%,减排能耗为7.08 MJ/kg CO2;从成本的角度分析,纯氧燃烧法熟料生产成本和CO2减排成本均最低;对于燃烧后CO2捕获技术,参考技术MEA化学吸收法,比其他被评估技术更易于技术改造,其具有对水泥生产的影响小、设备放置不受限制等优势;与水泥生产联系更紧密的是纯氧燃烧法和集成式钙循环法,这两种技术被评估为更具挑战性;由于不同评估指标的技术参数不同,无法评估哪种方法最好,一般水泥厂可以从CO2减排当量和减排能耗上选择,但视具体情况而定,例如空间需求、现有的基础设施或运营经验等。 相似文献
7.
8.
9.
10.
在0.15mol·L~(-1)H_2SO_4介质中,以氯化三辛基甲胺(TOMAC)为萃取剂,Cr(VI)被TOMAC定量萃取,而Cr(Ⅲ)不被萃取。将Cr(Ⅲ)氧化成Cr(Ⅵ)后可测水中总铬含量,通过差减法求出Cr(Ⅲ)含量。该方法快速、准确,可用于测定水中痕量的Cr(Ⅵ)和Cr(Ⅲ)。 相似文献
11.
12.
13.
将温室气体CO2以碳酸盐(如CaCO3、MgCO3)的固体形式永久储存起来,即CO2矿物碳酸化固定,是减少大气中CO2含量,解除温室效应的一种全新方法。从温室气体CO2矿物碳酸化固定所需的原料、化学及热力学、反应动力学机理等方面,分析了此种方法的特点,同时评述了CO2矿物碳酸化固定的6种典型工艺路线,以及国外有关温室气体CO2矿物碳酸化固定的研究热点。最后指出以工业固体废弃物为原料的间接工艺路线是温室气体CO2矿物碳酸化固定的具有较好应用前景的技术途径。 相似文献
14.
15.
Jee-Hoon Han Yu-Chan Ahn Jae-Uk Lee In-Beum Lee 《Korean Journal of Chemical Engineering》2012,29(8):975-984
To effectively reduce CO2, CO2 mitigation technologies should be employed tactically. This paper focuses on carbon capture and storage (CCS) as the most promising CO2 reduction technology and investigates how to establish CCS strategy suitably. We confirm a major part of the optimal strategy for CCS infrastructure planning through a literature review according to mathematical optimization criteria associated with facility location models. In particular, the feasibility of large scale CCS infrastructure is evaluated through economic, environmental, and technical assessment. The current state-of-the-art optimization techniques for CCS infrastructure planning are also addressed while taking numerous factors into account. Finally, a list of issues for future research is highlighted. 相似文献
16.
《Carbon》2015
The capture and sequestration of iodine-129 (129I), a long-lived byproduct of nuclear fission, is essential to the implementation of advanced nuclear fuel cycles and effective nuclear waste management. Current state-of-the-art technologies inherently require silver to bind iodine, e.g., silver-loaded silica aerogels or silver-loaded zeolite (AgZ), which are very expensive and an environmental concern. It is highly desirable to develop alternative cost-effective adsorbents for iodine capture and sequestration. Herein, we report graphene-based nanomaterials including graphene powder and graphene aerogel as novel iodine sorbents showing exceptional adsorption capability and kinetics. By measuring iodine sorption capacities and uptake rates in an I2(g) saturated environment, graphene sorbents display impressive iodine sorption capacities with powdered samples achieving mass gains in excess of 85 mass%, and aerogels exceeding 100% mass gains. A direct correlation among specific surface area, defect concentration, and maximum sorption capacity has been established, and the sorption kinetics of the graphene for iodine capture was determined. 相似文献
17.
Jin-Shy Tsai 《Polymer Engineering and Science》1994,34(19):1480-1484
The mechanical properties of carbon fiber, especially tensile modulus, are closely related to the orientation of crystals. Hence, the stretching of carbon fiber during carbonization is of importance. In this study, the tension arm between the carbonization furnaces was used to stretch carbon fiber. The relationships among the stretching tensions of the first stage carbonization (< 800°C) and the second stage carbonization (> 1200°C), the aromatization index for oxidized polyacrylonitrile fiber, and the properties of carbon fiber are discussed. 相似文献
18.
There are great interests to capture the CO_2 to control the greenhouse gas emission. Amine absorption of CO_2 is being taken as an effective way to capture CO_2 in industry. However, the amine absorption of CO_2 is cost-ineffective due to great energy consumption and solution consumption. In order to reduce the capture cost, catalyst fluidization is proposed here to intensify the mass transfer and heat transfer. Catalyst fluidization with field synergy and DFT model is developed by incorporating the effects of catalyst reaction kinetics, drag force and multi-field into the mass transfer, heat transfer, fluid flow and catalyst collision. Experiments with an improved distributor are performed well to validate the model. The reaction kinetics is determined by the DFT simulation and experiment. The mass transfer coefficient in the fluidized reactor is identified as 17% higher than the conventional packed reactor. With the field synergy of catalyst fluidization, the energy consumption for CO_2 desorption is reduced by 9%. Stepwise operation and inclination reactor are used to improve catalyst fluidization process. 相似文献
19.
Xiao Y. Luo Xiao Y. Lv Gui L. Shi Qin Meng Hao R. Li Cong M. Wang 《American Institute of Chemical Engineers》2019,65(1):230-238
Generally, amine group captures CO2 according to 2:1 or 1:1 stoichiometry. Here, we report a kind of improved carbon capture using amino-functionalized ionic liquids (ILs) through 1:2 stoichiometry. A serial of amino-functionalized ILs various with basicity and steric hindrance of anion were designed, prepared, and applied in CO2 capture. Through a combination of absorption experiment, quantum chemical calculation, spectroscopic investigation and calorimetric method, the results indicated that one amine group could bind two CO2 through proton transfer (PT) process and intramolecular hydrogen bond formation, which leading to enhanced capacity that breaks through equimolar. The basicity and steric hindrance of anion play a significant role in promoting amine group to capture two CO2. [P66614]2[Asp] with dual anion was further designed and synthesized to promote PT process, which showed high capacity of 1.96 mol/mol IL at 30°C and 1 atm as well as excellent reversibility. © 2018 American Institute of Chemical Engineers AIChE J, 65: 230–238, 2019 相似文献
20.
In the past decades, CO2 constituted nearly the 80% of anthropogenic greenhouse gases emissions therefore, global actions are needed to tackle the increase of carbon concentration in the atmosphere. CO2 (carbon) capture and storage has been highlighted among the most promising options to decarbonize the energy and industry sectors. Considering a large-scale infrastructure at European level, economic cooperation has been highlighted as a key requirement to relieve single countries from too high risk and commitment. This article proposes an economic optimization for cooperative supply chains for CO2 capture and storage, by adopting policies that balance the spread of costs among countries, according to local characteristics in terms of population, CO2 emissions, and macroeconomic outcome. Results show that the additional European investment for cooperation (max. +2.6% with respect to a noncooperative network) should not constitute a barrier toward the installation and operation of such more effective network designs. 相似文献