首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为研究铜藻多酚的分离纯化工艺及抗氧化活性。在超声辅助提取铜藻多酚的基础上采用大孔吸附树脂柱层析法分离纯化铜藻多酚提取物,以VC为对照采用体外实验分析其抗氧化活性。结果显示:大孔吸附树脂LX-158具有最佳的吸附和解析条件,静态吸附和解析平衡时间为5 h,动态吸附和解析的最佳条件为:粗提液和洗脱剂流速为3 mL/min,上样体积为10 mL,洗脱剂为40%乙醇溶液,洗脱剂体积为120 mL。此条件下铜藻多酚纯度从7.52%提高到40.31%。体外抗氧化活性结果显示:不同浓度的铜藻多酚对DPPH自由基、ABTS自由基、超氧阴离子自由基、羟自由基有明显的清除作用和Fe3+还原力,随着多酚浓度增大其抗氧化能力增强,IC50值分别为6.60μg/mL、75.70μg/mL、2.22 mg/mL、5.62 mg/mL。实验证明该纯化工艺可行且稳定,可以作为铜藻多酚纯化的工艺条件。  相似文献   

2.
目的:探讨静乐黑枸杞花青素的纯化工艺及其抗氧化活性。方法:比较HPD100、D101、NKA、AB-8、HPD400等五种树脂对静乐黑枸杞花青素的吸附与解析性能,筛选最佳树脂,并优化其纯化条件;采用DPPH自由基、OH自由基和ABTS自由基法,比较黑枸杞样品纯化前后的抗氧化活性。结果:HPD100大孔树脂对于静乐黑枸杞花青素有良好的纯化性能,适宜的工艺条件为:静乐黑枸杞粗提液上样浓度为0.2 mg/mL(含生药量)、上样体积为49 mL、洗脱剂为75%的乙醇溶液、洗脱剂用量42 mL,在此条件下,纯化后花青素的纯度由2.38%提高至17.82%。静乐黑枸杞具有较好的抗氧化能力,其粗提液和纯化液清除DPPH·的IC50 值分别为0.208 和0.011 mg/mL;对ABTS+·清除能力的IC50 值分别为0.476 和0.064 mg/mL;纯化液清除·OH 的IC50 值为6.24 mg/mL。结论:大孔树脂吸附法分离纯化静乐黑枸杞花青素工艺合理,且纯化后抗氧化活性明显提高。  相似文献   

3.
用石油醚、氯仿、乙酸乙酯、正丁醇、水对云南核桃分心木黄酮进行分步萃取,用AB-8大孔树脂纯化并分析其静态吸附动力学;以DPPH·、ABTS+·清除率和总还原能力为指标,探究纯化后不同极性提取物的抗氧化活性。结果表明:纯化后的石油醚、氯仿、乙酸乙酯、正丁醇、水提取物的黄酮纯度分别提高了3.29、1.94、1.86、1.58、1.80倍,较纯化前差异显著(P<0.05);纯化过程更符合准二级动力学模型(R2>0.99)。以IC50值为指标,乙酸乙酯提取物对DPPH·和ABTS+·清除能力最强,IC50值分别为(8.57±1.46)、(41.79±1.01)μg/m L,水提取物次之(17.38±2.71)、(64.62±1.79)μg/mL;当浓度为550μg/mL,乙酸乙酯提取物还原力最强,吸光值为1.69±0.12,水提取物次之1.13±0.03。相关性分析表明:DPPH·和ABTS+·清除率的IC50与总还原力之间存在极...  相似文献   

4.
研究沉香叶黄酮的大孔树脂纯化工艺及其抗氧化性。通过静态和动态实验,考察树脂种类、粗提液浓度、洗脱剂、上样流速、洗脱流速对沉香叶黄酮吸附解吸性能的影响,确定最佳纯化工艺条件;采用羟自由基法、DPPH自由基和ABTS自由基法,比较纯化前后沉香叶黄酮的抗氧化性。结果表明,NKA-9大孔树脂纯化沉香叶黄酮效果最好,最佳条件为:以1.5 mL/min速度将5.0 mg/mL粗提液上柱,用70%(v/v)乙醇以2.0 mg/mL速度洗脱,此条件下沉香叶黄酮纯度提高至76.58%±3.46%。沉香叶黄酮纯化后清除羟自由基、DPPH自由基和ABTS自由基IC50值分别为(0.120±0.008)、(0.016±0.009)、(0.042±0.002)mg/mL,远低于纯化前的(0.300±0.015)、(0.170±0.008)、(0.160±0.009)mg/mL,说明沉香叶黄酮纯化前后均具有较强的抗氧化性,纯化后抗氧化性明显增强。NKA-9大孔树脂适合分离纯化沉香叶黄酮。  相似文献   

5.
为了分离纯化紫山药中的多酚,研究了5种大孔树脂对紫山药多酚的吸附和解吸特性,筛选出了较适宜的树脂,并对其纯化工艺进行了优化。采用不同溶剂进行洗脱,评价不同洗脱组分对α-葡萄糖苷酶活性的抑制效果,分析了不同洗脱组分的单酚组成。结果表明,AB-8大孔树脂是较适于紫山药多酚分离纯化的吸附介质,其最佳纯化条件为:粗多酚溶液pH为5.0,质量浓度为2.0 g/L,上样流速为1.0 mL/min,吸附平衡后,用50%的乙醇进行洗脱,洗脱流速为1.2 mL/min时,纯化效果较好,经大孔树脂纯化后,多酚纯度为59.06%,提升了3.25倍。比较了50%乙醇、乙酸乙酯和三氯甲烷洗脱组分的α-葡萄糖苷酶抑制活性,其中乙酸乙酯洗脱组分对α-葡萄糖苷酶活性抑制效果最好,其IC50值为0.126 g/L;经高效液相色谱分析可知,其主要含有芦丁、阿魏酸、表儿茶素、绿原酸和槲皮素,说明紫山药多酚具有较高的开发价值。  相似文献   

6.
目的:对美味牛肝菌色素进行大孔树脂纯化并研究其抗氧化性。方法:通过静态和动态试验考察了树脂类型、上样浓度、pH、上样流速、乙醇体积分数及洗脱流速对美味牛肝菌色素吸附—解吸性能的影响,确定最佳纯化工艺条件;并采用红外光谱及DPPH·、ABTS+·及·OH清除能力研究纯化后色素的特征结构和抗氧化性。结果:AB-8大孔树脂纯化美味牛肝菌色素效果最好,最佳纯化工艺条件为:样液质量浓度1.5 mg/mL、pH 2.0、上样流速3.0 mL/min、乙醇体积分数70%、解吸流速2.0 mL/min,该条件下,美味牛肝菌色素的纯化效率是269%。纯化后美味牛肝菌色素清除DPPH·、ABTS+·及·OH的IC50值分别达到(0.081±0.001),(0.017±0.011),(0.119±0.001)mg/mL,其中清除·OH能力超过维生素C。结论:AB-8大孔树脂适用于美味牛肝菌色素的分离纯化,纯化后色素具有良好的抗氧化活性。  相似文献   

7.
为深入挖掘雀嘴茶的利用价值,本文以其中含量丰富的6’-O-咖啡酰熊果苷(CA)、β-熊果苷和绿原酸三大酚类成分为研究对象,对其抗氧化活性和酪氨酸酶抑制活性进行分析。结果表明,雀嘴茶三大酚类成分均表现出较好的抗氧化活性,6’-O-咖啡酰熊果苷(CA)、β-熊果苷和绿原酸清除DPPH自由基的IC50值分别为13.56±0.14、104.41±6.52和8.42±0.21μg/mL,清除ABTS+自由基的IC50值分别为18.01±0.06、50.60±1.25和26.93±0.38μg/mL,清除OH自由基的IC50值为2.64±0.06、>10.00和<1.00 mg/mL,对铁离子总还原能力的强度依次为绿原酸>CA>β-熊果苷;雀嘴茶三大酚类成分对酪氨酸酶的抑制活性差异较大,CA对酪氨酸酶兼具单酚酶和二酚酶抑制作用,其IC50值分别为1.114±0.035和95.198±1.117μmol/L,β-熊果苷仅有单酚酶抑制作用,IC50...  相似文献   

8.
目的:为拓展石榴籽开发用途,了解其多酚粗提物和纯化物的体外抗氧化活性作用强弱。方法:本实验采用有机溶剂浸提法提取石榴籽中的多酚物质并以有机溶剂萃取法进行纯化,采用ABTS法、邻苯三酚自氧化法、Fenton法和DPPH法测定了石榴籽粗提液及纯化液对ABTS自由基、羟基自由基、超氧阴离子和DPPH自由基的清除能力。结果表明,石榴籽中的多酚粗提液和纯化液对ABTS、DPPH自由基均有较强的清除能力,而对超氧阴离子自由基和羟基自由基的清除能力较弱;多酚粗提液清除ABTS、DPPH自由基的IC50值分别为37.13 191.82 μg/mL,多酚纯化液清除ABTS、DPPH自由基的IC50值分别为29.11、143.26 μg/mL;纯化液对ABTS自由基、羟基自由基及DPPH自由基的清除能力强于粗提液。  相似文献   

9.
通过水蒸气蒸馏法提取丁香不同部位(花蕾、果实、叶、枝)的挥发油,并采用气相色谱-质谱法鉴定其化学成分组成,并研究其抗氧化活性。结果表明,丁香酚、乙酰丁香酚和β-石竹烯等是丁香4个部位的主要成分;丁香花蕾、果实、叶、枝部位挥发油对DPPH·的IC50值分别为(37.35±0.82)、(98.18±0.50)、(21.37±0.32)、(28.14±0.46)μg/mL;对ABTS+·的IC50值为(139.48±0.76)、(244.99±1.21)、(117.32±0.63)、(141.61±0.84)μg/m L;还原力和铁离子还原/抗氧化能力(ferric ion reducing antioxidant power,FRAP)测定结果:丁香叶最大,花蕾与枝数值近似,丁香果实最小。  相似文献   

10.
实验研究酶法提取山楂叶多酚的工艺条件,并对山楂叶多酚的体外抗氧化活性进行了探讨。结果表明,使用纤维素酶和果胶酶质量比为1:1的复合酶,其质量浓度为0.20 mg/mL时,在酶解pH4.5、酶解温度45℃下酶解120 min时多酚提取得率最大,为0.56%。体外抗氧化实验结果表明,山楂叶粗多酚具有较好的总还原能力,其清除DPPH自由基的IC_(50)值为1.02μg/mL,螯合Fe~(2+)的IC_(50)值为55.62μg/mL,清除羟自由基的IC_(50)值为11.23μg/mL,提示山楂叶多酚具有良好的抗氧化能力,有进一步开发利用的价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号