首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
综述了动力电池荷电状态(SOC)估算的传统方法、人工智能方法的原理,分析了各估算方法的优缺点,给出了其他SOC估算的实现策略,如自适应卡尔曼滤波法、主元分析法以及遗传算法(GA)-BP神经网络法。研究表明,在动力电池SOC估算的实际应用中,要充分考虑实测数据、软硬件条件来选择相应的动力电池模型,综合考虑各种SOC估算策略,以此来提高SOC估算的精度。  相似文献   

2.
基于UKF的动力电池SOC估算算法研究   总被引:1,自引:0,他引:1  
动力电池荷电状态(SOC)在线估算对于混合电动汽车蓄电池管理系统有着举足轻重的意义。针对动力电池SOC估算算法中应用广泛的扩展卡尔曼滤波法(EKF)在非线性系统应用时存在的精度损失问题,采用无迹卡尔曼滤波法(UKF)以提高估算精度。研究了一种改进的电动势(EMF)电池等效模型,讨论了该模型的参数和空间状态方程,并将UKF应用于该模型估算SOC。由实验分析可知,对比采用开路电压法得出的SOC真实值,UKF结合EMF电池等效模型在估算算法中有较高的精度,其估算误差小于5%,且SOC估计结果明显优于EKF,具有较高的实用价值。  相似文献   

3.
电池荷电状态(SOC)的预测是影响电动汽车发展的关键技术之一,采用经典BP神经网络控制算法完成了动力电池的SOC估算研究。通过设计工况实验,在Matlab中对该算法进行了仿真验证,结果表明该算法能够很好地拟合动力电池充放电特性,误差可以减小到5%以内。  相似文献   

4.
精确估计电动汽车用动力锂离子电池荷电状态(SOC)对于电动汽车的续航里程的估计和动力电池的安全保护具有重要的意义。针对锂离子电池的非线性关系,采用BP神经网络法来估算SOC。以3.2 V/100 Ah的磷酸锂铁电池为研究对象,在恒温条件下采用Arbin BT2000系列的充放电测试仪进行充放电实验采集原始数据,并将数据导入到神经网络模型中去训练和验证。验证结果表明:用BP神经网络法估算SOC的误差能控制在5%以内,验证了模型的准确性,为相似的SOC估计算法的改进提供参考和依据。  相似文献   

5.
荷电状态(SOC)是描述动力电池状态的重要参数之一,提高SOC估计的准确性对电动汽车电池管理系统的研究至关重要。提出一种改进的最小二乘支持向量机(LS-SVM),动态地调整模型参数,对电池的开路电压(OCV)进行在线实时估计;通过SOC与OCV的关系确定初值,采用安时积分法估算SOC;并利用OCV的偏差信息对电池SOC进行修正,有效地补偿拟合误差和安时积分法产生的累计误差。仿真实验结果表明,在线LS-SVM算法能准确地逼近实际SOC值,平均绝对误差为1.279 3%。  相似文献   

6.
为了实现对18650动力电池荷电状态(SOC)的准确在线估算,将外界条件划分为12种情况,研究了有效电量、电池衰老及环境温度对电池SOC的影响。建立了一个BP神经网络模型,在12种条件下对其进行样本学习训练,建立了一种能够适用于不同条件下的基于条件查找方法的SOC估算模型。通过与传统方法对比,证明改进的估算方法具有更好的精度和实用性。  相似文献   

7.
电池SOC估算是电动汽车电池管理系统中重要的一部分,由于电池SOC的估算受很多因素综合影响(如充放电倍率、环境温度、循环寿命、自放电等),所以很难保证SOC在实际应用中的估算精度.通过对SOC估算方法的综述,分析了各种方法的实现原理、优缺点以及目前应用情况等.研究表明,在实际的应用中,应依靠实验数据、提高硬件技术保证数据测量精度、引入电池模型、综合各种算法,扬长补短,从而提高SOC估算的精度.  相似文献   

8.
扩展卡尔曼滤波法(EKF)被认为是一种精度较高的电动汽车动力电池荷电状态(SOC)估算法,但是观测方程误差会对SOC估算结果带来影响。对EKF滤波过程进行改进,根据观测方程的误差对原EKF滤波过程增设动态卡尔曼增益修正系数,提出基于卡尔曼增益动态修正的动力电池SOC估算法。仿真结果表明EKF法可以有效克服SOC初始值不准确所造成的估算误差,动态卡尔曼增益修正系数可以进一步减小由于观测方程误差造成的SOC估算误差,使估算误差保持在5%之内。  相似文献   

9.
在电动汽车能量管理控制策略和电池管理系统研究中,电池荷电状态(State of charge,SOC)的准确估算一直是重点和难点。基于磷酸铁锂动力电池的工作原理和充放电特性试验,利用MATLAB软件拟合获得不同放电电流下的库仑效率和开路电压与SOC的关系。并采用虚拟仪器LabVIEW与相关硬件,实时采集动力电池相关数据,将SOC估算的安时法与开路电压法相结合,实现了对动力电池SOC的实时估算与高精度显示,提高了电池SOC研发系统的实用性与准确性。  相似文献   

10.
为了准确预测混合动力汽车(HEV)动力电池的SOC,将安时法、开路电压法和卡尔曼滤波算法结合起来,并考虑温度、滞环效应等因素对SOC的影响,提出了新的SOC估算方法。通过建立电池的二阶动态RC模型并且采用双无味卡尔曼滤波(DUKF)的方法估算电池模型的状态和参数,使电池的SOC估算达到更高的精度。通过蓄电池的放电实验初步确定电池的模型参数以及电池的开路电压(OCV)与SOC的关系曲线,并且采用matlab仿真验证了DUKF方法对SOC估算的准确性。  相似文献   

11.
利用神经网络进行了动力电池荷电状态(SOC)预测研究。在分析磷酸铁锂电池充放电机理的基础上,采用levenberg-marquardt(LM)算法建立了动力电池的BP(back propagation)神经网络模型,并进行了电池SOC值的预测。结果表明,基于神经网络的电池SOC预测方法具有较高的精度,可用来预测磷酸铁锂电池的SOC值。  相似文献   

12.
电动汽车动力电池模型和SOC估算策略   总被引:10,自引:1,他引:10  
主要研究如何准确估算电动汽车动力电池的荷电量状态。通过对开路电压、自恢复效应、温度、充放电效率、寿命等多个影响荷电量状态的主要因素进行深入研究,建立了一种新的荷电量状态的数学模型,并在此基础上提出了一种电量状态复合估算策略。当电池处于不同状态时,合理地使用开路电压初始电量预估算法、直接调用记录初始电量预估算法、Ah电量动态计量法、系数修正法等不同方法估算电量状态,多种方法的复合使用弥补了使用单一方法的不足,有利于提高电量状态的估算精度。该电量状态复合估算策略成功地应用在电动汽车动力电池的管理上,使电量状态的估算误差小于4%。  相似文献   

13.
由于纯电动汽车的工作环境十分复杂,电流量测中的有色噪声信号会造成动力电池荷电状态(SOC)估算结果的不精确甚至发散,为解决该问题,在此提出一种增广矩阵扩展卡尔曼联合递推增广最小二乘(AMEKFRELS)算法,针对有色噪声进行建模,在线辨识并实时修正系统参数。仿真与实验结果表明,与简化有色噪声为白噪声的估测算法相比,该算法响应速度快,估测精度高,能够满足动力电池实际应用需要。  相似文献   

14.
15.
电动车电池管理系统(BMS)能精确估算电池荷电状态(SOC),是电池安全和优化控制充放电能量的必要保证。针对整车环境下动力电池的非线性、强耦合特性,在多维动态补偿安时积分与电池模型融合的基础上,提出一种无损卡尔曼滤波(UKF)方法估算电池的SOC。应用Simulink仿真工具及Stateflow有限状态机工具建立一个简单可靠易移植的电池管理系统应用层控制策略模型。仿真结果验证了模型的可靠性,同时表明无损卡尔曼滤波能获得准确的SOC估算值。  相似文献   

16.
提出了一种基于量子遗传算法改进量子神经网络模型的荷电状态估计方法.考虑电池健康状态指标,分析引入内阻参数对电池估计精度的影响.针对传统神经网络及其改进算法的不同估计缺陷,在其基础上进行量子编码并动态自适应调整量子旋转角,缩短搜索时间的同时提高了收敛精度.最后在MATLAB仿真测试,验证了所提算法相较传统神经网络的收敛性...  相似文献   

17.
提高电池荷电状态(SOC)估计的准确性对电动汽车电池管理系统的研究至关重要。根据历史实验数据,在分析了电池电压、电流、电池表面温度及放电总电量等因素对电池SOC的影响后,提出一种利用小波神经网络的SOC在线实时估计方法。通过与BP神经网络的预测结果进行比较,结果表明,小波神经网络能更准确地逼近实际SOC值,并克服了神经网络容易陷入局部次优点的缺点,且将神经网络隐含层的传输函数用小波函数代替,算法易实现且易于应用和推广。  相似文献   

18.
针对工况环境下动力电池SOC的变化具有非线性的特点,对未来SOC状态进行精确预测。首先采用EKF预测模型对动力电池SOC值进行预测,根据预测结果划分SOC状态区间,进一步得到SOC值的Markov状态转移矩阵,然后将EKF模型与Markov状态转移矩阵相结合对SOC进行预测。设计了UDDS工况下的实验验证方案来获取动力电池SOC数据样本,对比分析表明,EKF-Markov方法能够有效地削弱EKF方法所产生的预测误差累积效应,平均预测误差相较EKF降低了83.3%,可对动力电池SOC做出更精确的预测。  相似文献   

19.
基于LS-SVM算法动力电池SOC估计方法的研究   总被引:1,自引:0,他引:1  
于洋  纪世忠  魏克新 《电源技术》2012,36(3):349-351,370
提高电池荷电状态(SOC)估计的准确性对于电动汽车电池管理系统的研究至关重要。根据历史实验数据分析了电池电压、电流、放电总电量因素对电池的影响,利用最小二乘支持向量机具有非线性逼近能力强、收敛速度快、全局最优解的特性对电动汽车电池SOC值进行在线实时估计,与BP神经网络的预测结果进行比较。仿真及实验室测试结果表明,最小二乘支持向量机算法能更准确地逼近实际SOC值,该方法的最大估算误差降低到0.02,达到了动力汽车的应用要求。  相似文献   

20.
电动汽车动力电池SOC预测技术研究   总被引:23,自引:7,他引:23  
电动汽车的电池管理系统需要一个精确和可靠的电池荷电状态 (SOC)预测器。由于铅酸蓄电池真实的SOC受许多因素如电池温度、充放电次数、电池老化等因素的影响 ,传统的SOC预测技术很难达到理想的效果。描述了一种闭环模糊推理方法在铅酸蓄电池SOC预测技术方面的应用。其中 ,闭环反馈环节采用了一个经验公式来调节铅酸蓄电池SOC的预测值。重新定义了一种容易从放电曲线中获得的电池内阻 ,利用这个电池内阻值可以很容易地把不同工况下的电池端电压等效到一个固定工况下的端电压 ,从而可以简化模糊规则的设计。经仿真证明这种方法能够获得蓄电池精确和可靠的SOC预测值  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号