首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
以大米粉为原料,采用挤压膨化法研究挤压膨化对大米粉糊化度及蛋白质体外消化率的影响,通过单因素及正交实验分析了物料含水量、螺杆转速、第五区温度对大米粉糊化度及蛋白质体外消化率的影响,分析得出挤压膨化大米粉的最佳参数为:物料含水量为18%,螺杆转速为190 r/min,第五区温度为190℃;在此实验条件下进行验证实验,糊化度为90.72%,蛋白质体外消化率为82.80%,挤压膨化后大米粉蛋白质体外消化率比未经挤压处理的大米粉蛋白质体外消化率提高了10.31%。本研究为大米精深加工提供一定的参考。  相似文献   

2.
双螺杆挤压对膨化小米糊化特性的影响研究   总被引:1,自引:0,他引:1  
以优质小米为原料,采用双螺杆挤压膨化技术,对小米挤压糊化特性进行了研究.结果表明:影响双螺杆挤压膨化小米糊化度的主要因素是膨化温度,其次是螺杆转速和物料含水量,物料粒度影响较小.最佳工艺条件是物料粒度60目、物料含水量16%、膨化温度160℃、螺杆转速425 r/min,糊化度为93.4%.  相似文献   

3.
目的:采用双螺杆挤压工艺制备蛹虫草复合谷物杂粮膨化产品,并研究蛹虫草对谷物杂粮膨化产品淀粉糊化特性的影响。方法:以大米粉、糯米粉、薏米粉、红豆粉、黄豆粉、蛹虫草粉为原料,按照一定比例混合制成蛹虫草复合谷物杂粮粉进行挤压膨化实验,并在单因素试验的基础上,选择物料水分含量、螺杆转速、进料速率、挤压温度为影响因素,产品径向膨化率、糊化度、水分含量、吸水性和水溶性指数为指标,设计正交试验,用极差分析法优化出蛹虫草复合谷物杂粮膨化产品的最佳工艺,并利用快速黏度仪测定谷物杂粮膨化产品和蛹虫草复合谷物杂粮膨化产品的淀粉糊化特性。结果:蛹虫草复合谷物杂粮膨化产品的最优工艺参数为物料水分含量16%、螺杆转速180 r/min、机筒的5 段挤压温度80-90-120-140-165 ℃、进料速率15 r/min,此时蛹虫草复合谷物杂粮膨化产品的径向膨化率、糊化度、水分含量、水溶性和吸水性指数分别为3.015、84.32%、6.11%、29.65%、416.39%;与谷物杂粮膨化产品相比,蛹虫草复合谷物杂粮膨化产品峰值黏度、保持黏度、最终黏度、回生值显著下降。结论:蛹虫草复合谷物杂粮膨化产品挤压工艺可行,添加蛹虫草能够显著降低谷物杂粮膨化产品的糊化特征值,并抑制其淀粉分子的回生或重排。  相似文献   

4.
分别以80目玉米粉、糙米粉、燕麦粉、麦麸粉作为营养杂粮粉生产原料,研究物料含水量、螺杆转速、机筒温度对产品品质指标径向膨化度、糊化度和吸水性指数的影响,在此基础上设计正交试验,确定挤压技术制备膨化营养杂粮粉的最佳工艺参数为物料含水量15%、螺杆转速130r/min、机筒温度160℃,此时产品径向膨化度为3.26,糊化度为91.87%,吸水性指数为491.8%。  相似文献   

5.
为了获得直接挤压制备米粉(线)的最适工艺参数,采用响应面(RSM)方法设计试验方案,对挤压机挤压制作米粉的工艺参数进行优化分析。研究原料含水量、机筒温度、螺杆转速对米粉糊化度的影响。结果表明:3个因素对糊化度影响大小依次为机筒Ⅲ区温度>螺杆转速>原料含水量。通过响应面分析得出挤压米粉最佳工艺:原料含水量35.1%,Ⅲ区温度102℃,螺杆转速117 r/min。在此条件下,米粉糊化度为92.1。与3种市售产品对比,自制米粉在硬度、糊化度、咀嚼性和感官品质方面达到了市售产品平均水平。  相似文献   

6.
以玉米豆粕为原料,研究了不同挤压膨化条件对挤出物的糊化度及脲酶活性的影响。通过单因素结果得知:随着出口段温度、物料含水量、螺杆转速、喂料速度的增加,挤出物的糊化度均呈现先增大后减小的趋势;随着物料配比(豆粕∶玉米)的增大,挤出物的糊化度逐渐减小。通过脲酶活性正交试验结果得知,4个因素对脲酶活性的影响顺序为出口段温度螺杆转速喂料速度物料含水量。  相似文献   

7.
玉米产品挤压膨化特性的影响因素   总被引:3,自引:0,他引:3  
以优质的玉米为原料,采用挤压膨化技术,研制出玉米膨化产品。通过正交试验确定了挤压温度、物料水分含量、螺杆转速对产品膨化物糊化度的影响,并找出了最佳工艺参数值:挤压温度160℃,物料水分含量20%,螺杆转速300r/min。  相似文献   

8.
以鲜猪肉、香芋粉和大米粉为原料,利用双螺杆挤压膨化技术研制一款咸味型香芋猪肉膨化食品。试验选取机筒温度(X1)、螺杆转速(X2)、物料湿度(X3)作为主要工艺参数,以断裂力、糊化度、膨化度、水分含量、感官评价作为评价指标,通过正交试验进行优化。结果表明,优化后工艺条件为机筒温度150℃,螺杆转速45 Hz,物料湿度15%,挤压膨化效果最佳。  相似文献   

9.
以什社小米为原料,探索挤压膨化处理工艺对小米粉速溶特性的影响,明确了物料粒度、物料含水量、膨化温度、螺杆转速等影响因素对小米速溶粉速溶特性的影响。结果表明:物料粒度80目、物料含水量17%、膨化温度165℃、螺杆转速140r/min时,小米速溶粉在蛋白分散指数(PID)、分散性、流动性、润湿性、沉降性、堆积密度和溶解度等几个速溶指标间能够达到比较均衡的表现,产品速溶特性表现良好。试验为进一步研究以挤压膨化方式进行速溶小米粉的加工工艺提供了一定基础。  相似文献   

10.
研究物料含水量、挤压温度、螺杆转速对马铃薯全粉水溶性、碘蓝值、糊化特性等理化性质的影响。结果表明:随物料含水量的增大,马铃薯全粉的水溶性、碘蓝值逐渐减小,吸水性、吸油性逐渐增大,膨胀性先增大后减小,在35%时最大,糊化温度先减小后增大,峰值黏度、谷值黏度、最终黏度、凝胶性逐渐增大,热稳定性在30%时最强;随挤压温度的增大,水溶性、碘蓝值逐渐增大,吸水性、吸油性逐渐减小,膨胀性先增大后减小,在170℃最大,糊化温度、热稳定性逐渐增大,峰值黏度、谷值黏度、最终黏度、凝胶性逐渐减小;随螺杆转速的增大,水溶性、碘蓝值逐渐增大,吸水性、吸油性逐渐减小,膨胀性先增大后减小,在360r/min时最大,糊化温度逐渐减小,峰值黏度、谷值黏度、最终黏度、凝胶性逐渐增大,热稳定性先减弱后增强,在280r/min时最弱。  相似文献   

11.
以紫糙米粉为原料,通过响应面分析法优选紫糙米粉的挤压工艺,利用黏度测定仪(RVA)、X-射线衍射(XRD)、扫描电镜(SEM)表征挤压前后紫糙米粉的糊化特性、结晶特性及微观结构的变化。结果表明:挤压温度147 ℃,水分含量18%,螺杆转速27 Hz,进料速率18 Hz,测得样品的WSI为11.32%、糊化度为93.15%、花色苷含量为97.38 mg/100 g,综合评分为92.43。与原料粉相比,该条件下制备的挤压膨化紫糙米粉,峰值黏度、低谷黏度、衰减值、最终黏度、回生值均显著降低(P<0.05)。挤压膨化后紫糙米粉的淀粉晶体结构由A型转变为V型,结晶度下降;紫糙米粉表面变得光滑,呈现出较多的孔洞结构。表明挤压膨化技术能显著改善紫糙米粉的糊化性质与水化特性,为紫糙米即食代餐粉产品开发提供理论与技术参数依据。  相似文献   

12.
利用挤压技术对酿造酱油的芝麻粕和面粉等原料进行预处理,可以起到淀粉糊化的作用。在单因素试验的基础上,以挤出物 糊化度为考察指标,以挤压温度、螺杆转速、面粉含量、含水量为挤压参数,运用Box-Behnken试验设计对挤压芝麻粕酿造酱油中挤压 参数进行优化。 结果表明,最佳挤压参数为挤压温度90 ℃,螺杆转速200 r/min,面粉含量26%,含水量21%。 在此最优条件下,挤出物 的糊化度为91.23%。  相似文献   

13.
将精白米加工过程中产生的碎米粉进行挤出处理,通过正交试验对影响碎米粉中可溶性固形物及可溶性糖含量的主要因素进行研究和分析。结果表明:各因素对可溶性固形物及可溶性糖含量影响强弱次序为水分含量>螺杆转速>挤出温度;碎米粉双螺杆挤出的最佳条件为含水量25%、挤出温度140℃、螺杆转速240r/min,在此条件下,碎米粉挤出物中可溶性固形物及可溶性糖含量分别为39.88%、7.90%,分别是未挤出处理样的1.53倍、3.64倍。采用高效液相色谱法,对最佳挤出条件处理的碎米粉中可溶性糖进行检测,其中果糖275.124mg/100g、葡萄糖891.632mg/100g、蔗糖853.144mg/100g、麦芽糖516.576mg/100g、麦芽三糖353.266mg/100g。  相似文献   

14.
为了阐明挤压加工技术对苦荞粉理化性质的影响,分别研究了不同挤压温度、物料水分和螺杆转速对挤压苦荞粉的吸水性指数、水溶性指数、膨胀势、糊化及凝胶特性的影响规律。结果表明:与未挤压苦荞粉相比,经挤压改性后的苦荞粉在30℃水浴时有更好的吸水性和水溶性;在100℃水浴时的水溶性增大,吸水性减小;膨胀势、糊化特征值及凝胶特征值均明显升高。随挤压温度升高,挤压苦荞粉的峰值粘度、衰减值增大,谷值粘度、回生值降低,制成的凝胶品质更好;随物料水分升高,吸水性指数、膨胀势、各糊化特征值显著增大,水溶性指数明显降低,低物料水分形成的凝胶品质较好;随螺杆转速升高,水溶性指数增大,吸水性指数和峰值粘度、谷值粘度、衰减值稍降低,膨胀势先增大后减小,转速越高的苦荞粉的凝胶品质越好。综合而言,物料水分变化对挤压苦荞粉的各理化性质影响最大。吸水性指数和水溶性指数与糊化特性、凝胶特性都有显著相关性(P0.05);膨胀势与糊化特性极显著正相关(P0.01),与凝胶特性没有显著相关性。  相似文献   

15.
速溶婴幼儿营养米粉的挤压膨化工艺研究   总被引:3,自引:0,他引:3  
研究了以碎大米为主要原料采用挤压膨化法制作婴幼儿米粉的干法生产工艺.通过正交试验确定了最优的大米挤压膨化工艺参数:大米水分为18%,螺杆转数为200 r/min,模头温度为150℃,以此参数制得的膨化米粉溶解性和口感最佳,并分析了膨化大米和未膨化大米的主要成分变化.通过正交试验确定了速溶婴幼儿营养米粉的最佳配比为:膨化米粉65%,全脂奶粉8%,白砂糖粉16%,全蛋粉2%.通过感官评价和各项指标的检测结果表明,应用挤压膨化法生产速溶婴儿营养米粉工艺是可行的.  相似文献   

16.
以留胚米为原料,焙炒预糊化粉碎后,在挤压机螺杆转速100 r/min,水分含量30%,挤压温度50~90℃的条件下对留胚米粉进行挤压。研究在预糊化-低温挤压过程中不同的挤压温度对留胚米粉理化性质的影响。结果表明:随着挤压温度的升高,留胚米粉的糊化度逐步提高;淀粉、脂肪、蛋白质、γ-氨基丁酸(GABA)含量均有所下降,而当温度超过70℃后,可溶性膳食纤维含量显著(P<0.05)升高;留胚米粉的吸水性指数显著下降(P<0.05),水溶性指数、膨胀势有所上升;总色差?E增大;粒径显著增大(P<0.05);差示扫描量热仪分析发现留胚米粉的起始温度(T0)、峰值温度(TP)和终止温度(TC)逐渐升高,吸热焓由1.14 J/g下降至0.82 J/g,糊化程度逐步增加;傅里叶红外光谱分析表明,在所有挤压温度下留胚米粉的淀粉结构中并未产生新的基团或化学键。上述结果显示,预糊化-低温挤压对留胚米粉的理化特征具有显著影响,适宜的挤压温度减少了营养成分的损失。  相似文献   

17.
潘菁  汪何雅  钱和 《食品工业科技》2012,33(9):268-270,275
研究了以大米为主要原料,加入制备得到的大米蛋白作为蛋白补充剂的低敏米粉配方。配方如下:大米粉65%,粉末油脂4%,白砂糖10%,制备得蛋白粉21%。研究了制备以上配方产品挤压膨化的工艺路线,采用单因素和正交实验确定了该产品挤压膨化的工艺条件参数:原料水分含量18%,螺杆转速80r/min,套筒末端温度为140℃。感官评定的结果表明,该产品感官性质可以满足需求。  相似文献   

18.
以荞麦粉为原料,研究物料配比、加水量、螺杆转速以及进料量对膨化食品品质指标(比容)的影响。设计正交实验,确定出最佳工艺参数为:荞麦麦心与麦皮的配比为30∶70,螺杆转速为350r/min,进料量为450g/min,原料加水量为40%。同时,利用膨化荞麦粉为主要原料,分别进行了荞麦粉添加量、加水量、挤丝温度、物料细度4个因素对朝鲜族冷面品质影响的单因素实验。实验结果表明:影响冷面品质的因素依次为挤丝温度荞麦粉添加量物料细度加水量,最佳工艺条件组合为荞麦粉添加量为30%,加水量为40%,挤丝温度为100℃,物料细度为80目。  相似文献   

19.
主要以玉米粉,大米粉和豆渣粉为原料,用双螺杆挤压机进行挤压膨化,通过单因素试验和正交试验研究了螺杆转速、机筒温度、物料水分对提高产品可溶性膳食纤维含量及感官品质的影响。实验结果表明:在基础配方大米∶玉米=1∶3,豆渣的添加量8%的情况下,最佳挤压工艺条件为螺杆转速850 r/min,机筒温度150℃,物料水分14%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号