首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct ethanol fuel cell has been attracting increased attention due to its safety and the wider availability of ethanol as compared with methanol. The present work investigates the anodic oxidation of ethanol on a core-shell structured Ru@PtPd/C catalyst in alkaline media. The catalyst shows high activity toward the anodic oxidation of ethanol; with 18 wt.% ruthenium as the core and 12 wt.% PtPd (Pt:Pd = 1:0.2) as the active shell, its activity in terms of PtPd loading is 1.3, 3, 1.4, and 2.0 times as high as that of PtPd/C, PtRu/C, Pd/C, and Pt/C, respectively, indicating high utilization of Pt and Pd. The ratio of forward peak current density to backward peak current density (If/Ib) reaches 1.5, which is 1.9 times that of PtPd/C catalyst, revealing high poisoning tolerance to the intermediates in ethanol electrooxidation. In addition, the stability of Ru@PtPd/C is higher than that of Pt/C and PtPd/C, as evidenced by chronoamperometric evaluations. The catalyst is extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy. The core-shell structure of the catalyst is revealed by XRD and TEM.  相似文献   

2.
This paper reports a modified core–shell structured CuPd@Pt/C catalyst, which was synthesized by combining a two-step reduction method and chemical dealloying step using carbon black Vulcan XC-72R as the supporting material. The physical measurements confirmed that the final catalyst has a complete core–shell structure. The interaction between the core and the shell as well as the particle size, particle size distribution, and morphology of the catalyst particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results of inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron spectroscopy (XPS) indicated that the Pt and Pd on the surface of the catalyst nanoparticles are mainly in the zero valence oxidation state. Cyclic voltammetry (CV) and rotating disk electrode (RDE) tests were used to measure the electrochemical performance, and the results showed that the modified CuPd@Pt/C catalyst has higher electrochemical catalytic activity in catalyzing the oxygen reduction reaction (ORR) than Pt/C, making it possible to reduce the usage of platinum and leading to a promising low-Pt catalyst for proton exchange membrane fuel cells (PEMFCs).  相似文献   

3.
Antimony doped tin oxide supported on carbon black (ATO/C) has been synthesized using an in situ co-precipitation method, and platinum-ATO/C nanoparticles have been prepared using a consecutive polyol process to enhance the catalyst activity for the methanol oxidation reaction. The Pt-ATO/C electrocatalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microcopy (SEM), energy dispersive X-ray spectroscopy (EDS) and cyclic voltammetry. The Pt-ATO/C catalyst exhibits a relatively high activity for the methanol oxidation reaction compared to Pt-SnO2/C or commercial Pt/C catalyst. This activity can be attributed to the high electrical conductivities of the Sb-doped SnO2, which induces the electronic effects with Pt catalysts. Pt-ATO/C is a promising methanol oxidation catalyst with high activity for the reaction in direct methanol fuel cells.  相似文献   

4.
Two novel catalysts for anode oxidation of formic acid, Pd2Co/C and Pd4Co2Ir/C, were prepared by an organic colloid method with sodium citrate as a complexing agent. These two catalysts showed better performance towards the anodic oxidation of formic acid than Pd/C catalyst and commercial Pt/C catalyst. Compared with Pd/C catalyst, potentials of the anodic peak of formic acid at the Pd2Co/C and Pd4Co2Ir/C catalyst electrodes shifted towards negative value by 140 and 50 mV, respectively, meanwhile showed higher current densities. At potential of 0.05 V (vs. SCE), the current density for Pd4Co2Ir/C catalyst is as high as up to 13.7 mA cm−2, which is twice of that for Pd/C catalyst, and six times of that for commercial Pt/C catalyst. The alloy catalysts were nanostructured with a diameter of ca. 3–5 nm and well dispersed on carbon according to X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The composition of alloy catalysts was analyzed by energy dispersive X-ray analysis (EDX). Pd4Co2Ir/C catalyst showed the highest activity and best stability making it the best potential candidate for application in a direct formic acid fuel cell (DFAFC).  相似文献   

5.
Cobalt molybdenum (Co-Mo) carbides were prepared by the carburization of Co-Mo oxides at temperatures of 723–973 K in a stream of CH4/H2 gas. The carburized catalysts were evaluated using a single-stack fuel cell and three-electrode cell. The results showed high activities for the anodic electrooxidation of hydrogen over the Co-Mo catalysts carburized at 873 and 923 K. The 873 K carburized Co-Mo catalyst had the highest activity and achieved 10.9% of the performance of a commercial Pt/C catalyst in a single-stack fuel cell. The XRD, TPC, TPR and XPS results showed that the Co-Mo oxycarbide in the bulk and on the surface are the active species for the hydrogen oxidation reaction.  相似文献   

6.
Cerium-promoted Pt/C catalysts were prepared by one-pot synthesis process and applied as an anode material for CO tolerance in PEM fuel cell. Its physical properties were characterized by XRD and TEM techniques, which indicated that Pt nano-particles are highly dispersed on the carbon supports. The investigation focused on examining the CO tolerance in sulfur acid solution of Pt–CeO2/C compared to Pt/C (JM). The hydrogen oxidation activity was strongly depended on the content of the cerium in the Pt catalyst which was detected by CV, LSV, CO-stripping and EIS techniques. Effect of the anode catalyst poisoning on hydrogen oxidation in the presence of CO was studied in single cells. Pt–CeO2/C catalyst at the appropriate content of 20% Ce presented a very higher CO tolerant activity. A tentative mechanism is proposed for a possible role of a bi-functional synergistic effect between Pt and CeO2 for the enhanced electro-oxidation of CO. CeO2-promoted Pt/C catalyst may be one of the attractive candidates as CO tolerance anode material in PEMFC.  相似文献   

7.
Methanol electro-oxidation was investigated on PtSnO2/C based electrocatalyst in acidic solution. This study was focused on the use of this material as anodic active material for potential applications in direct methanol fuel cells. PtSnO2/C nanoparticles were prepared using a microwave-assisted synthesis. Physic-chemical and electrochemical characterizations were carried out by XRD, TEM, EDS, cyclic voltammetry and chronoamperometric studies. TEM analysis revealed that PtSnO2/C electrocatalyst is formed by well dispersed nanoparticles with average particle size around 2.2 nm. The results showed that synthesized PtSnO2/C has better electrochemical characteristics than commercial PtRu/C for methanol oxidation. It was found that PtSnO2/C showed less methanol oxidation reaction onset potential than PtRu/C. The investigation of some kinetic parameters like Tafel slope and charge transfer coefficient showed that PtSnO2/C has a Pt based electrocatalyst performance associated to the bi-functional process able to oxidize CH3OH and COads, it is probably activated by the co-existence of SnO2 phase.  相似文献   

8.
Cu@Pt–Ru core–shell supported electrocatalysts have been synthesized by a two-step process via a galvanic displacement reaction. XRD diffraction and EDX analysis, and cyclic voltammetry measurements revealed the presence of nanoparticles composed by a Cu-rich Pt–Cu core surrounded by a Pt-rich Pt–Ru shell. Cyclic voltammetry and chronoamperometric measurements showed that as-synthesized core–shell materials exhibit superior catalytic activity towards methanol and ethanol electro-oxidation compared to a commercial Pt–Ru/C catalyst with higher Pt loading. This behavior can be associated with the lattice mismatch between the Pt-rich shell and the Cu rich core, which in turn produces lattice-strain, surface ligand effects and a large amount of surface defect sites. In addition, the core–shell electrodes displayed a better catalytic activity and lower onset potentials for ethanol oxidation than for methanol oxidation.  相似文献   

9.
Pt nanoparticles supported on NiTiO3/C has been synthesized by a wet chemical method, using the corresponding metal precursors and citric acid as a complexing reagent. The nanocomposite has been characterized using X-ray diffraction (XRD), Transmission Electron Microscope (TEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. The electrocatalytic Methanol Oxidation Reaction (MOR) has been performed using Pt-NiTiO3/C catalyst in both alkaline and acid medium. Analysis using cyclic voltammetry (CV), steady state polarization (SSP), and chronoamperometry (CA) techniques clearly demonstrate that Pt-NiTiO3/C catalyst exhibits higher performance in methanol oxidation in alkaline medium compared to acid medium. The results demonstrate that NiTiO3 has significant promotion effect on the electrocatalytic activity and stability for the methanol electro-oxidation. The enhanced activity is attributed to the ability of NiTiO3 to promote COads oxidation through strong interaction with Pt (which is in close proximity to NiTiO3). Pt-NiTiO3/C appears to be a promising anode catalyst for direct methanol fuel cells.  相似文献   

10.
Development of low cost anodic materials and high efficient electro-kinetics of methanol in direct methanol fuel cell (DMFC) has been a promising approach. However it has not been successfully reached to market from laboratory due to its high cost and low kinetic oxidation. Both issues encounter from one of its main components, the catalyst. Therefore, present work focuses upon the development of new catalyst material and optimization of various most significant influencing parameters of a high performance DMFC. We have developed a nanocomposite material employing gold nanoparticles and fullerene-C60 at glassy carbon electrode (AuNP@reduced-fullerene-C60/GCE) as anode for high performance oxidation of methanol. Fullerene-C60 was manually dropped on pre treated GCE and partially electro-reduced in KOH to make it more conductive. Gold nanoparticles (AuNPs) were deposited on reduced-fullerene-C60 modified electrode using cyclic voltammetry (CV). Electrochemical characterization techniques such as CV, electrochemical impedance spectroscopy (EIS) and chronocoulometry were used to characterize modified electrode. Modified electrode was also characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) for morphological properties. The electrochemical behavior of methanol was performed in alkaline medium using CV and chronoamperometry methods. The results revealed good electrocatalytic performance and better stability than previously reported catalysts using AuNP@reduced-fullerene-C60 catalyst, suggesting making promising anodic material for direct methanol oxidation fuel cell.  相似文献   

11.
A Cu@Pt/C catalyst was synthesized by a two-step reduction method using Vulcan XC-72R as the supporting material. Physical and electrochemical techniques were applied to investigate the structure and performance of the catalyst. X-ray diffraction (XRD) and transmission electron microscopy (TEM) examinations showed that the catalyst has a core-shell structure, the distribution of the catalyst particles is quite uniform, and the particle size ranges from 5 to 6 nm. Cyclic voltammetry (CV) and rotating disk electrode (RDE) tests confirmed the high performance of the Cu@Pt/C catalyst with the atom ratio Cu: Pt of 2.73: 1, making it a promising low-Pt catalyst for proton exchange membrane fuel cell (PEMFC).  相似文献   

12.
Platinum decorated Ru/C catalysts are prepared by successive reduction of a platinum precursor on pre-formed Ru/C. Pt:Ru atomic ratios are varied from 0.13:1 to 0.81:1 to investigate the platinum decoration effects on the catalyst's structure and electrochemical performance towards the methanol oxidation reaction (MOR) at room temperature. The catalysts are extensively characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Ru@Pt/C catalysts show enhanced mass-normalized activity and specific activity for the MOR relative to Pt/C. For the anodic oxidation of methanol, the ratio of forward to reverse oxidation peak current R (If/Ib) varies considerably: R decreases from 5.8 to 0.8 when the Pt:Ru ratio increases from 0.13:1 to 0.81:1. When the ratio of Pt:Ru is 0.42:1, R reaches 0.99 (close to that of Pt/C), and further increase of the Pt:Ru ratio leads to almost no decrease in R. Coincidentally, maximum mass-normalized activity is also obtained when Pt:Ru is 0.42:1.  相似文献   

13.
Pt nanoparticles supported on a mesoporous material of zeolite Faujasite-C composite is a highly active catalyst for methanol and ethanol oxidation in alkaline media. Pt was synthesized by a simple methodology of chemical reduction using ultrasound method. Faujasite-C composite was prepared by sol-gel method using fly ash as economic precursor. Pt/Faujasite-C was characterized by X-ray diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy to investigate its structure, morphology, composition and size. The electrochemical activity of catalyst towards methanol and ethanol oxidation reaction in alkaline media was evaluated by cyclic voltammetry and chronoamperometry techniques. The results obtained were compared with Pt/C synthesized and tested at the same conditions. According to TEM results Pt/Faujasite-C electrocatalyst exhibits a higher Pt agglomeration compared to Pt/C. Pt/Faujasite-C is more active for alcohol oxidation reactions compared to Pt/C. Pt electrocatalysts are more active for ethanol oxidation than methanol oxidation. Chronoamperometric results indicated that Pt deactivation by intermediate poisoning is more severe for ethanol than methanol. Pt/Faujasite-C can be used as anodic electrocatalyst in direct liquid fuel cells.  相似文献   

14.
The Ni1@Pt0.067 core–shell nanoparticles with a thin layer of Pt shell have been prepared by colloidal template method. The structure and composition of the prepared core–shell nanoparticles have been analyzed by using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In addition, the electrochemical performance of the prepared nanoparticles has been analyzed by potentiodynamic polarization and cyclic voltammetry (CV), by testing their activity towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). Experimental results indicate that the Ni1@Pt0.067 particles are well distributed, with an average particle size of approximately 6 nm and shell thickness of approximately 0.5 nm–2.1 nm. Compared with Pt/C, the Ni1@Pt0.067/C nanoparticles prepared in this study show significantly improved catalytic activity towards ORR and MOR. However, with increase in methanol concentration in the electrolyte composed of 0.5 mol L−1 H2SO4 + x mol L−1 methanol (where, x = 0, 0.2, 0.5 and 1.0), the limiting current of MOR on Ni1@Pt0.067/C increase remarkably, whereas the ORR activity weakens. Based on the experimental data, we analyze the mechanism underlying the impact of methanol concentration on the ORR in Ni1@Pt0.067/C and find that the surface of Pt has a variety of activity sites.  相似文献   

15.
PbPt core–shell-like nanoparticles supported on graphene is successfully synthesized by a simply galvanic displacement reaction method. The composition, morphology, structure of the catalyst and activity towards methanol oxidation are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Chronoamperometric and CV results reveal that PbPt core–shell-like nanoparticles catalyst has better activity towards methanol oxidation than the pure platinum prepared under the same conditions. These behaviors are attributed to an electronic effect of the inner Pb or the increase in the d-orbital vacancy of Pt in core–shell-like PbPt catalyst.  相似文献   

16.
Cost-effective non-noble metal catalysts are of key significance to the successful use of direct methanol fuel cells (DMFCs) for electricity generation. Herein, cuprous oxide nanoparticles (Cu2O NPs) supported graphene oxide (GO), polypyrrole (PPy) and polypyrrole–graphene oxide (PPy–GO) matrices were prepared using borohydride reduction method. The prepared catalysts were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis spectra, Zeta potential and transmission electron microscopy (TEM). The elemental analysis of the composites was done by energy dispersive X-ray spectroscopy (EDX). Cu2O NPs were homogeneously dispersed and strongly anchored on the PPy grafted GO matrix and this was examined through morphological analysis. The Cu2O/PPy–GO (80:10:10) NPs exhibited noticeable improvement in electrochemical performance in comparison to pure graphene oxide (GO) and pure PPy supported Cu2O NPs catalyst and revealed the peak current density of 300 μA cm?2 at +0.68 V. The Cu2O/PPy–GO system demonstrated higher current density and also exhibited greater stability in comparison to the commercial Pt–Ru/C catalyst as characterized by chronoamperometry (CA) analysis. This prospective nano-catalyst showed higher IF/IB ratio (26%, 8.6% and 19%) compared to the corresponding catalyst systems of Cu2O/GO, Cu2O/PPy and Pt–Ru/C. In direct methanol fuel cell (DMFC), the efficiency of Cu2O/PPy–GO nano-catalyst system as an anode catalyst for methanol oxidation reaction (MOR) was investigated and the result revealed a maximum current density of 155 mA cm?2 at +0.2 V and power density of 31 mW cm?2. Hence, Cu2O/PPy–GO NPs are a cost-effective alternative for Pt–Ru/C system to execute practical application in DMFC.  相似文献   

17.
The Pt3Tex/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g−1, respectively. On the current–time curve, the anodic current on the Pt3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.  相似文献   

18.
Platinum (Pt) is often used as anodic catalyst for direct methanol fuel cell (DMFC). However, platinum is difficult to achieve large-scale application because of its low stability and high cost. In this work, the electrocatalytic activity and stability of the Pt-based catalyst for methanol oxidation (MOR) are significantly improved by adding Ce and Ni to the catalyst. Additionally, the rare earth element-Pr (Dy) is also chosen to be added into the catalysts for comparison. A series of PtMNi (M = Ce, Pr, Dy) catalysts are prepared by impregnation and galvanic replacement reaction methods using carbon black as support. The electrocatalytic mass activity of PtCeNi/C, PtDyNi/C, PtPrNi/C and Pt/C is 3.92, 1.86, 1.69 and 0.8 A mgPt−1, respectively. The mass activity of these the above four catalysts after stability measurement is 3.14, 1.49, 1.27 and 0.72 A mgPt−1. Among them, PtCeNi/C has the highest catalytic activity. These as-prepared catalysts are also characterized by various analyzing techniques, such as TEM, HRTEM, XRD, XPS, ICP-OES, STEM, STEM-EDS elemental mapping and line-scanning etc. It shows that PtCeNi/C exhibits best catalytic activity (3.92 A mgPt−1) among the as-obtained catalysts, 4.9 times higher than that of commercial Pt/C (0.8 A mgPt−1). PtCeNi/C is also with excellent anti-CO poisoning ability. The outstanding catalytic performance of PtCeNi/C for the MOR is mainly attributable to uniform-sized PtCeNi nanoparticles, uniform Ni, Ce and Pt element distribution, and electron interaction among Pt-, Ni- and Ce-related species (electron transferring from Pt to CeO2).  相似文献   

19.
The anodic Pt–Ru–Ni/C and the Pt–Ru/C catalysts for potential application in direct methanol fuel cell (DMFC) were prepared by chemical reduction method. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were carried out by using a glassy carbon working electrode covered with the catalyst powder in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4 at 25 °C. EIS information discloses that the methanol electrooxidation on the Pt–Ru–Ni/C catalyst at various potentials shows different impedance behaviors. The mechanism and the rate-determining step of methanol electrooxidation are changed with increasing potential. Its rate-determining steps are the methanol dehydrogenation and the oxidation reaction of adsorbed intermediate COads and OHads in low (400–500 mV) and high (600–800 mV) potentials, respectively. The catalytic activity of the Pt–Ru–Ni/C catalyst is higher for methanol electrooxidation than that of the Pt–Ru/C catalyst. Its tolerance performance to CO formed as one of the intermediates of methanol dehydrogenation is also better than that of the Pt–Ru/C catalyst.  相似文献   

20.
Platinum – cobalt (PtCo) alloy based highly efficient nano electro-catalysts on reduced graphene oxide (rGO) matrix have been synthesized for the electro-oxidation of methanol, by chemical reduction method. Different molar ratio of Pt (IV) and Co (II) ions along with graphene oxide (GO) were reduced using ethylene glycol to obtain PtCo nanoparticles onto rGO sheets (Pt/rGO, PtCo (1:1)/rGO, PtCo (1:5)/rGO, PtCo (1:9)/rGO and PtCo (1:11)/rGO) with 20 wt. % metal and 80 wt. % rGO. The average particle size of PtCo nanoparticles onto rGO support was observed to be 2–5 nm using XRD and TEM analysis. The PtCo (1:9)/rGO nanocomposite catalyst exhibited ~23 times higher anodic current density compare to commercially available Pt/C catalyst (1.68 mA/cm2) for methanol oxidation reaction. The peak power density of 118.4 mW/cm2 was obtained for PtCo (1:9)/rGO catalyst in direct methanol fuel cell (DMFC) at 100 °C, 1 bar, and 2 M methanol as anode feed, which is ~3 times higher than that of Pt/C catalyst. The results indicate the potential application of synthesized nanocomposite catalyst in commercial DMFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号