首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Drying Technology》2013,31(8):1559-1577
ABSTRACT

The ability of heat pump dryer to produce controlled transient drying conditions, in terms of temperature, humidity and air velocity, has given it an edge over other drying systems. Exploiting this characteristic, we studied and compared the effect of different temperature-time profiles on the quality of agricultural products in a tunnel heat pump dryer capable of providing up to 14.6 kW of cooling capacity. The product quality refers to the color change of the products. Samples of banana and guava were dried in batches in a two-stage heat pump dryer. The effects of the starting temperature of a selected profile and the cycle time on both drying kinetics and product quality were studied. It was observed that by employing a step change in drying air temperature with the appropriate starting temperature and cycle time, it was possible to reduce significantly the drying time to reach the desired moisture content with improved product color.  相似文献   

2.
《Drying Technology》2013,31(8):1949-1960
Samples of banana were dried in a two-stage heat pump dryer capable of producing stepwise control of the inlet drying air temperature while keeping absolute humidity constant. Two stepwise air temperature profiles were tested. The incremental temperature step change in temperature of the drying air about the mean air temperature of 30 °C was 5 °C. The total drying time for each temperature-time profile was about 300 minutes. The drying kinetics and color change of the products dried under these stepwise variation of the inlet air temperature were measured and compared with constant air temperature drying. The stepwise air temperature variation was found to yield better quality product in terms of color of the dried product. Further, it was found that by employing a step-down temperature profile, it was possible to reduce the drying time to reach the desired moisture content.  相似文献   

3.
Thin-layer drying experiments under controlled conditions were conducted for green sweet pepper in heat pump dryer at 30, 35, and 40°C and hot air dryer at 45°C with relative humidities ranging from 19 to 55%. The moisture content of sweet pepper slices reduced exponentially with drying time. As the temperature increased, the drying curve exhibited a steeper slope, thus exhibiting an increase in drying rate. Drying of green sweet pepper took place mainly under the falling-rate period. The Page equation was found to be better than the Lewis equation to describe the thin-layer drying of green sweet pepper with higher coefficient of determination and lower root mean square error. Drying in heat pump dryer at 40°C took less time with higher drying rate and specific moisture extraction rate as compared to hot air drying at 45°C due to lower relative humidity of the drying air in a heat pump dryer though the drying air temperature was less. The retention of total chlorophyll content and ascorbic acid content was observed to be more in heat pump–dried samples with higher rehydration ratios and sensory scores. The quality parameters showed a declining trend with increase in drying air temperature from 30 to 45°C. Keeping in view the energy consumption and quality attributes of dehydrated products, it is proposed to dry green sweet pepper at 35°C in heat pump dryer.  相似文献   

4.
Pieces of banana, guava and potato were dried in a two-stage heat pump dryer capable of precise control of air humidity with predetermined cyclic variations of air temperature entering the drying chamber. The air temperature variations tested were : a cosine, a reversed cosine and three different square wave profiles with peak-to-valley variations from 20°C to 40°C. The cycle time was about 60 minutes with drying time of approximately 300 minutes. The drying samples were placed on trays in a thin layer. With appropriate choice of temperature-time variation, it is possible to reduce the overall color change while maintaining high drying rates.  相似文献   

5.
An innovative two-stage drying concept is presented in this article. The work considered drying of shrimp using a superheated steam dryer followed by a heat pump (SSD/HPD) or a hot air dryer (SSD/AD) both from drying kinetics and dried product quality points of view. The experiments were performed using the first-stage superheated steam drying temperature of 140°C while the second-stage heat pump drying (or hot air drying) was performed at 50°C. The moisture content of shrimp at the end of the superheated steam drying stage was varied between 30 and 40% (w.b.). The effect of tempering between SSD/HPD was also investigated. Shrinkage, color, rehydration behavior, texture (toughness and hardness), and microstructure of dried shrimp were measured. The results showed that SSD/HPD dried shrimp had much lower degree of shrinkage, higher degree of rehydration, better color, less tough and softer, and more porous than single-stage SSD dried shrimp. It was also found that SSD/AD gave redder shrimp compared to shrimp dried in a single-stage superheated steam dryer. No improvement in terms of shrinkage and rehydration behavior was observed, however.  相似文献   

6.
新鲜的榴莲蜜舍糖量高,水分多,是一种很容易腐烂的水果。为了能够延长贮存时间必须降低含水量。由于舍糖量高,当用传统的热风干燥进行干燥时,榴莲蜜表面会出现焦糖化。为了克服这个问题,在干燥的开始阶段应用间歇热泵干燥机,在干燥中期应用低温的除湿空气。结果表明:利用循环温度和递升温度干燥的样品湿含量可降低到0.081—0.110(g水/g干物质k此研究中用有限差分法来估算有效扩散系数值,较好地模拟了干燥动力学数据。就产品质量而雷,在循环温度干燥中减少热风干燥时间可生产柔软的干燥产品。而且,低温除湿空气的缓苏作用能减少干燥样品的总体颜色变化。  相似文献   

7.
ABSTRACT

Pieces of banana, guava and potato were dried in a two-stage heat pump dryer capable of precise control of air humidity with predetermined cyclic variations of air temperature entering the drying chamber. The air temperature variations tested were : a cosine, a reversed cosine and three different square wave profiles with peak-to-valley variations from 20°C to 40°C. The cycle time was about 60 minutes with drying time of approximately 300 minutes. The drying samples were placed on trays in a thin layer. With appropriate choice of temperature-time variation, it is possible to reduce the overall color change while maintaining high drying rates.  相似文献   

8.
《Drying Technology》2013,31(4):759-778
Abstract

An innovative two-stage drying concept is presented in this article. The work considered drying of shrimp using a superheated steam dryer followed by a heat pump (SSD/HPD) or a hot air dryer (SSD/AD) both from drying kinetics and dried product quality points of view. The experiments were performed using the first-stage superheated steam drying temperature of 140°C while the second-stage heat pump drying (or hot air drying) was performed at 50°C. The moisture content of shrimp at the end of the superheated steam drying stage was varied between 30 and 40% (w.b.). The effect of tempering between SSD/HPD was also investigated. Shrinkage, color, rehydration behavior, texture (toughness and hardness), and microstructure of dried shrimp were measured. The results showed that SSD/HPD dried shrimp had much lower degree of shrinkage, higher degree of rehydration, better color, less tough and softer, and more porous than single-stage SSD dried shrimp. It was also found that SSD/AD gave redder shrimp compared to shrimp dried in a single-stage superheated steam dryer. No improvement in terms of shrinkage and rehydration behavior was observed, however.  相似文献   

9.
Low-pressure superheated steam drying (LPSSD) has recently been applied to drying of various heat-sensitive foods and bioproducts with success. Several studies have shown that the quality of LPSSD-dried products is superior to that obtained using conventional hot air or vacuum drying. However, drying time and energy consumption for LPSSD is generally greater than that for vacuum drying. Therefore, it is necessary to examine different methodologies to improve the energy efficiency of LPSSD. An intermittent drying scheme is one possible method to reduce the energy consumption of the process while maintaining the desired product quality. In this study, the effect of intermittent supply of energy (through an electric heater and steam injection to the dryer) and vacuum (through the use of a vacuum pump) at various intermittency values or on:off periods (10:5, 10:10 and 10:20 min in the case of intermittent supply of energy and 5:0, 5:5, and 5:10 min in the case of intermittent supply of vacuum) at the on-period setting temperatures of 70, 80, and 90°C on the drying kinetics and heat transfer behavior of the drying samples (banana chips) was studied. The effects of these intermittent drying schemes and conditions on the quality parameters of dried banana chips; i.e., color, shrinkage, texture, and ascorbic acid retention, were also studied. Finally, the energy consumption values for intermittent LPSSD and vacuum drying were monitored through the effective (or net) drying time at various intermittent drying conditions and compared with those using continuous LPSSD and vacuum drying.  相似文献   

10.
ABSTRACT

A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace' drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporator bypass air affected markedly on the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.  相似文献   

11.
Intermittent drying aims to match the heat input rate to the drying kinetics of the material so as to avoid thermal degradation of heat-sensitive products in particular. This paper presents results of a liquid diffusion model to examine the effect of varying the rates of heat input by convection heat transfer. This is accomplished by varying the drying air velocity, varying the air temperature as well as its relative humidity over different periods of time in a sequential manner. One of the outcomes of this work is guidelines for use of a heat pump to dehumidify the drying air. While most heat pump dryers are designed to operate continuously, our results show that it is not necessary to use heat pump continuously over the entire drying period. This option saves running costs by reducing use of electrical power in the drying cycle. Furthermore, it is possible to save capital costs by utilizing a smaller heat pump for a given dry product output. Alternatively, a given heat pump system can be used to service two or more drying chambers that may dry the same or different products by simply switching the dehumidified and heated air from one chamber to the other sequentially. When the heat pump air is switched off, unsaturated ambient air maybe used to accomplish rest of the drying. It is shown that using heat pump air over only a part of the drying cycle does not increase the drying time appreciably.  相似文献   

12.
Kinetics of hot air drying and heat pump drying were studied by performing various drying trials on salak slices. Isothermal drying trials were conducted in hot air drying and heat pump drying at a temperature range of 40–90°C and 26–37°C, respectively. Intermittent drying trials were carried out in heat pump drying with two different modes: periodic heat air flow supply and step-up air temperature. It was observed that the effects of relative humidity and air velocity on drying rate were significant when moisture content in salak slices was high, whereas the effects of temperature prevailed when the moisture content was low. As such, it was proposed that drying conditions should be manipulated according to the moisture transport mechanisms at different stages of drying in order to optimize the intermittent drying and improve the product quality. Generally, loss of ascorbic acid during drying was attributed to thermal degradation and enzymatic oxidation, whereas the loss of phenolic compounds was mainly due to thermal degradation. Experimental results showed that heat pump drying with low-temperature dehumidified air not only enhanced the drying kinetics but produced a stable final product. Heat pump–dried samples retained a high concentration of ascorbic acid and total phenolic compounds when an appropriate drying mode was selected.  相似文献   

13.
《Drying Technology》2013,31(7):1333-1356
Abstract

Intermittent drying aims to match the heat input rate to the drying kinetics of the material so as to avoid thermal degradation of heat-sensitive products in particular. This paper presents results of a liquid diffusion model to examine the effect of varying the rates of heat input by convection heat transfer. This is accomplished by varying the drying air velocity, varying the air temperature as well as its relative humidity over different periods of time in a sequential manner. One of the outcomes of this work is guidelines for use of a heat pump to dehumidify the drying air. While most heat pump dryers are designed to operate continuously, our results show that it is not necessary to use heat pump continuously over the entire drying period. This option saves running costs by reducing use of electrical power in the drying cycle. Furthermore, it is possible to save capital costs by utilizing a smaller heat pump for a given dry product output. Alternatively, a given heat pump system can be used to service two or more drying chambers that may dry the same or different products by simply switching the dehumidified and heated air from one chamber to the other sequentially. When the heat pump air is switched off, unsaturated ambient air maybe used to accomplish rest of the drying. It is shown that using heat pump air over only a part of the drying cycle does not increase the drying time appreciably.  相似文献   

14.
Abstract

Grape is one of the most popular fruits and various types of grape have been cultivated by more than 100 countries around the World. The wine and juice industry produces large quantities of by-product, called grape pomace (GP) as an industrial waste and it consists of skins, seeds, and stems. Various processes such as separation, pressing, drying, and milling are applied to benefit from its health effects. In this study, the seeded black GP Kalecik karas? (Vitis vinifera) was dried in an assisted closed cycle heat pump dryer (HPD) designed for high-moisture products to investigate the drying behaviors of GP. The effects of drying air temperature on bioactive properties and the drying characteristics of GP, and performance of system have discussed. Experiments were carried out at two different temperatures (45 and 50°C) and air velocity of 1.0 m/s. It was seen that increasing temperature decreased the drying time, coefficient of performance of whole system (COPws), and specific energy consumption (SEC). The average values of COPws for temperatures 45°C and 50°C were calculated as 3.28 and 3.10, respectively. The drying efficiencies (DE) at drying air temperature of 45°C and 50°C ranged from 2 to 12% and from 2 to 15%, respectively. Additionally, result of analysis has indicated that using a HPD at lower temperatures increases performance of system despite of higher energy input. Bioactive properties of dried samples at drying air temperature of 45°C are better than 50°C. The results show that drying the GP at low temperature is more suitable for product quality. For this reason, heat pump may be preferred. It shows that this drying system with higher capacities in the future can be recommended as an alternative technique in terms of energy usage, drying time, and performance of system.  相似文献   

15.
Atmospheric freeze drying (AFD) in a vibro-fluidized bed dryer coupled with an adsorbent and multimode heat input is proposed for dehydration of food products at lower cost than the traditional freeze-drying process under vacuum. The aim of this project is to study the proposed AFD system using a vortex tube to produce low-temperature dry air, an alternative for producing dried food products of high quality. An experimental setup was designed and built to permit simultaneous application of convection, conduction, and radiation heat input to the drying material above its freezing point to ensure sublimation. A parametric evaluation over a broad range of possible parameter values was carried out using cubic-shaped potato and carrot as model heat-sensitive products. The influence of various system parameters on drying kinetics, quality, and functional properties of the dried products (color, rehydration properties, and morphology) were investigated. Comparison between physical quality and drying characteristics of the AFD system with AFD using fixed bed, fluidized bed dryer, and also with traditional vacuum freeze drying were carried out to investigate the viability of this new system. Results indicate that proposed system is an alternative to reduce the process time as well as to maintain the product quality at lower cost.  相似文献   

16.
Atmospheric freeze drying (AFD) in a vibro-fluidized bed dryer coupled with an adsorbent and multimode heat input is proposed for dehydration of food products at lower cost than the traditional freeze-drying process under vacuum. The aim of this project is to study the proposed AFD system using a vortex tube to produce low-temperature dry air, an alternative for producing dried food products of high quality. An experimental setup was designed and built to permit simultaneous application of convection, conduction, and radiation heat input to the drying material above its freezing point to ensure sublimation. A parametric evaluation over a broad range of possible parameter values was carried out using cubic-shaped potato and carrot as model heat-sensitive products. The influence of various system parameters on drying kinetics, quality, and functional properties of the dried products (color, rehydration properties, and morphology) were investigated. Comparison between physical quality and drying characteristics of the AFD system with AFD using fixed bed, fluidized bed dryer, and also with traditional vacuum freeze drying were carried out to investigate the viability of this new system. Results indicate that proposed system is an alternative to reduce the process time as well as to maintain the product quality at lower cost.  相似文献   

17.
Heat pump–assisted dryers are an alternative method for drying heat-sensitive food products at low temperature and less relative humidity with lower energy consumption. The mathematical models of a heat pump dryer consist of three submodels; namely, drying models, heat pump models, and performance models. Heat and mass balance of both refrigerant and air circuits in all components of the system are used for development of mathematical models. The models are used for design of different components of heat pump dryers operating under constant drying rate condition. A simple stepwise design procedure for batch-type, closed-loop heat pump dryer is also presented.  相似文献   

18.
An even span solar greenhouse dryer was built and applied to dry Java tea (Orthosiphon aristatus) and Sabah snake grass (Clinacanthus nutans Lindau). Findings showed that the solar greenhouse dryer performs satisfactorily during clear weather except at nighttime and rainy day due to product rehydration which is heavily influenced by high relative humidity from ambient air. Integrating of heat pump into the solar greenhouse dryer has successfully reduced the room relative humidity by 10–15%. Also, heat pump has mitigated the product rehydration issue by maintaining room relative humidity at maximum of 65% throughout the drying period. The drying rate of Java tea was improved three to fourfold, i.e., from 0.004–0.008 to 0.018–0.025?g H2O/g DM min, whereas 10% of drying time was saved for both Java tea leaf and Sabah snake grass leaf with the assistance of heat pump system. Meanwhile, the supply of dry air from the heat pump system with a magnitude of 0.25–0.50?m/s helps in enhancing the drying rate of the herbs as well as minimizing the nonuniformity of drying temperature and relative humidity inside the solar greenhouse dryer.  相似文献   

19.
Low‐temperature drying is important for heat‐sensitive products, but at these temperatures conventional convective dryers have low energy efficiencies. To overcome this challenge, an energy efficiency optimization procedure is applied to a zeolite adsorption dryer subject to product quality. The procedure finds a trade‐off between the improved drying capacity due to dehumidification and energy expenditure due to regeneration while incorporating product drying properties. By optimizing the regeneration air inlet temperature, drying air, adsorbent, and regeneration air flow rates as well as sensible and latent heat recovery from the regenerator exhausts, the energy efficiency is improved by up to 45 % compared to the state‐of‐the‐art. The high mass transfer effect of high temperatures is utilized in the regenerator to boost dehumidification while isolating the heat‐sensitive dried product from the quality‐degrading effect.  相似文献   

20.
This article presents experimental and simulated results of drying of peeled longan in a side-loading solar tunnel dryer. This new type of solar tunnel dryer consists of a flat-plate solar air heater and a drying unit with a provision for loading and unloading from windows at one side of the dryer. These are connected in series and covered with glass plates. A DC fan driven by a 15-W solar cell module supplies hot air in the drying system. To investigate the experimental performance, five full-scale experimental runs were conducted and 100 kg of peeled longan was dried in each experimental run. The drying air temperature varied from 32 to 76°C. The drying time in the solar tunnel dryer was 16 h to dry peeled longan from an initial moisture content of 84% (w.b.) to a final moisture content of 12% (w.b.), whereas it required 16 h of natural sun drying under similar conditions to reach a moisture content of 40% (w.b.). The quality of solar-dried product was also good in comparison to the high-quality product in markets in terms of color, taste, and flavor. A system of partial differential equations describing heat and moisture transfer during drying of peeled longan in this solar tunnel dryer was developed and this system of nonlinear partial differential equations was solved numerically by the finite difference method. The numerical solution was programmed in Compaq Visual FORTRAN version 6.5. The simulated results agreed well with the experimental data for solar drying. This model can be used to provide the design data and it is essential for optimal design of the dryer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号