首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以第3代环氧端基脂肪族超支化聚酯(EHBP)增韧的环氧树脂(E-51)为基体材料,超支化聚酯基二茂铁(HBPE-Fc)为吸波剂,制备具有一定力学承载及电磁性能的超支化聚酯基二茂铁/环氧树脂(HBPE-Fc/E-51)复合材料,并通过力学性能测试及扫描电镜、矢量网络分析仪等研究了该复合材料的力学及电磁性能。结果表明,添加较低含量的HBPE-Fc能较好地改善环氧树脂体系的拉伸及冲击性能,第4代HBPE-Fc质量分数为2%时,与纯环氧树脂体系相比,HBPE-Fc/E-51复合材料的拉伸强度、断裂伸长率和冲击强度分别提高了21.81%、34.32%和15.41%,对固化体系的拉伸断面分析发现引入HBPE-Fc后材料表现出韧性断裂。HBPE-Fc/E-51复合材料的玻璃化转变温度在105.29~130.27 ℃之间,具有良好的热稳定性,同时该复合材料具有一定的电磁特性。  相似文献   

2.
研究了一种在-150℃~100℃宽温度范围具有较高剪切和剥离强度,并且能够承受液氮温度(-196℃)~150℃冷热冲击的室温固化环氧胶粘剂体系。探讨了促进剂2,3,4-三(二甲胺基甲基)苯酚(DMP30)的最佳用量,考察了不同固化时间及后固化工艺对胶粘剂固化度、玻璃化转变温度和力学性能的影响。结果表明,适量DMP30的添加有利于提高固化物的力学性能,后固化可以提高固化物的固化度和拉伸强度,但对于已处于玻璃态的固化物的性能影响很小。当胶粘剂的本体强度达到一定值后,体系固化度和玻璃化转变温度与其剪切强度的关系不大,后固化对其本体强度的提升不能带来粘接强度的相应明显提高。  相似文献   

3.
用自制的γ-(2,3-环氧丙氧)丙基倍半硅氧烷为改性剂,对双酚A缩水甘油醚型环氧树脂E-51进行改性,两者配比为60/40(质量比),选用等当量的4,4'-二氨基二苯砜(DDS)为固化剂,形成环氧-倍半硅氧烷杂化材料.通过凝胶特性曲线、傅立叶变换红外光谱(FTIR)以及差示扫描量热方法(DSC)研究了该体系的固化反应特性及动力学问题;初步研究了固化体系的力学性能以及热性能.结果表明,该体系具有较好的工艺性,其固化反应的活化能是 48.7 kJ/mol,体系的热变形温度(HDT)达到200℃,热分解温度达到442℃,玻璃化转变温度(Tg)达到245℃,比相同条件下的E-51/DDS体系分别高出了31,58,20℃,体系在800℃时热残余量为25%,同时其弯曲强度和冲击强度基本保持不变.  相似文献   

4.
用偏光显微镜研究了环氧树脂(EP)/液晶化合物固化体系在固化过程中,不同温度、不同反应时间、不同的液晶聚合物加入量下体系的形态变化,用力学方法和差热分析仪(DSC)测试了不同液晶聚合物加入量下固化物的力学性能和玻璃化转变温度(Tg)。结果表明:起始固化温度、固化时间、共混方式都对固化体系中液晶的有序结构有较大影响,加入不同含量的液晶聚合物,均可以使固化物的冲击强度、拉伸强度、弯曲强度、模量和Tg提高,其中冲击强度最大提高3.5倍,拉伸强度提高1.6倍,弯曲强度提高1.26倍,弯曲模量提高1.1倍,Tg提高60℃。  相似文献   

5.
咪唑封端扩链脲改性环氧树脂E-51/酸酐MTHPA体系性能研究   总被引:1,自引:0,他引:1  
以端羟基聚环氧丙烷1000,甲苯二异氰酸酯(TDI),2-甲基咪唑为原料,合成了扩链脲TI,利用DSC,动态热机械分析仪DMA,冲击试验机及扫描电镜(SEM)等手段对TI改性的环氧树脂E-51/甲基四氢化邻苯二甲酸酐(MTHPA)固化体系的反应活性,动态力学行为,冲击性能,断裂面形态结构进行了系统研究,结果表明,改性后的E-51/MTHPA体系反应活性明显提高,固化反应峰顶温度较未改性体系降低160℃-200℃,固化反应的表观活化能由未改性体系的160.3kJ/mol降至63kJ/mol-87kJ/mol,同时与未改性体系相比,经过改性的环氧树脂固化体系冲击强度有较大的提高,在TI含量为5%时体系的玻璃化转变温度Ts达到最高,各改性体系冲击断面呈韧性断裂。  相似文献   

6.
纳米TiO_2对复合固化环氧树脂胶粘剂的改性研究   总被引:2,自引:0,他引:2  
通过添加具有活性的纳米TiO_2对异佛尔酮二胺(IPD)与酰胺基胺树脂作为复合固化剂的环氧胶粘剂体系进行改性,实验结果表明:随着纳米TiO_2的适量加入,环氧胶粘剂体系的物理性能得到很大改善,当纳米TiO_2的加入量达到6%(Wt)时,达到最佳值,与纯树脂体系相比,弯曲强度提高96%,弯曲模量提高38%,冲击强度提高180%.而此时的环氧复合胶粘剂体系的粘接性能也比纯树脂均有所提高,剪切强度提高39%、剥离强度提高28%,以及玻璃化温度提高6%.可见,纳米TiO_2的加入对环氧胶粘剂体系具有明显的增强作用.  相似文献   

7.
采用熔融共混挤出法制备改性纳米羟基磷灰石(HA)/聚乳酸(PLA)-聚己二酸丁二酯-对苯二甲酸丁二酯(PBAT)复合降解材料,利用差示扫描量热仪(DSC)、流变仪、电子拉伸机、扫描电镜(SEM)等,对其结晶、流变行为、力学性能、冲击性能、表面结构等进行了研究。DSC结果表明:随着改性纳米HA添加量的增多,HA/PLA-PBAT共混体系的玻璃化转变温度先升高后下降;冷结晶温度逐渐下降,降低了13℃,结晶能力有所提高;结晶度由24.33%增加到33.47%。流变行为显示共混体系黏度随剪切速率的增大而减小,属非牛顿流体。此外,随着改性纳米HA的增多,HA/PLA-PBAT共混体系储存模量和损耗模量逐渐减小;屈服强度、缺口冲击强度、拉伸强度先增大后减小,当共混体系中改性纳米HA添加量为2%(80/20/2)时,达到最大值。SEM观察发现,少量改性纳米HA可以均匀分散在PLA-PBAT基体中并能显著提高其韧性。  相似文献   

8.
近年来,碳纤维增强热塑性复合材料(CFRTP),尤其是碳纤维/聚醚醚酮(CF/PEEK)复合材料以其优异的综合性能受到了大量关注。高性能碳纤维/聚醚醚酮复合材料具有强度大、韧性好、使用温度高等诸多优点,在航空航天、机械、电气、汽车工业和生物工程等领域得到了广泛的应用。针对近年的研究热点,对碳纤维/聚醚醚酮复合材料在界面性能、力学性能、生物相容性、成型工艺、失效机理等方面的研究进展进行了综述,为材料的制备技术研究及产业化应用奠定基础。   相似文献   

9.
采用SEM研究了B30/iPP,B30/sPS和sPS/iPP/B30共混体系的相形态结构。结果表明,B30/iPP,B30/sPS可相容;sPS/iPP是不相容体系,但B30可作为sPS/iPP共混体系的相容剂。DSC结果表明,加入适量的相容剂B30,共混体系中iPP玻璃化温度(iPP-Tg)随B30加入量增加而逐渐升高,而sPS玻璃化温度(sPS-Tg)随B30加入量增加而逐渐降低。在最佳配比条件下,共混物的力学性能比均聚物的要好.共混体系sPS/iPP/B30=90/10/10的无缺口冲击强度为42.3 kJ/m2,拉伸强度为33.7 MPa。  相似文献   

10.
采用双酚A型环氧树脂(E-51)对耐高温环氧树脂体系二氧化双环戊二烯(CDR-0122)进行了改性处理。分析了E-51改性前后的物理特性,考察了改性前后浇铸体的冲击性能、弯曲性能和玻璃化转变温度,以及树脂基玻纤复合材料的基本力学性能。实验结果表明,E-51与CDR-0122有良好的相容性,且CDR-0122和E-51/CDR-0122树脂体系都应密封保存。添加E-51后浇铸体的冲击强度和弯曲强度分别提高了141.48%和52.38%,玻璃化转变温度下降了2.73%;E-51改性后的树脂基玻纤复合材料的弯曲强度和拉伸强度分别提高了20.5%和19.1%。  相似文献   

11.
用扭辫分析技术研究了玻纤/环氧复合材料固化过程,得到三类固化行为;T固化gg(凝胶化作用和玻璃化作用同时发生的固化温度)时,仅有玻璃化作用。Tgg固化g∞(热固体系最大的玻璃化转变温度)时,则有凝胶作用和玻璃化作用。Tg∞固化时,仅有凝胶化作用。根据一系列的等温固化谱图和热机谱图,得到时间——温度——转变(TTT)状态图。此图可以用来指导复合材料复合工艺固化过程。最后还测定了固化反应活化能和反应速度常数以及反应级数等化学动力学参数。   相似文献   

12.
在熔融状态下共聚制得端羧基己内酰胺齐聚物/四氨基铜酞菁共聚物,然后将其与PA 6共混,得到共聚物与PA 6的共混物,并用FT-IR,UV/v is,DSC等方法对共聚物的结构和共混体系的性能进行了表征。研究结果表明,添加1%的共聚物可使共混体系呈均匀的绿色,有良好的相容性,体系具有良好的光吸收性,共聚物含量低的共混体系有较高的玻璃化温度和结晶温度。共混体系的冲击强度提高了45.5%。  相似文献   

13.
氰酸酯/双马来酰亚胺树脂的增容改性研究   总被引:2,自引:0,他引:2  
李文峰  王国建 《功能材料》2007,38(A07):2849-2852
采用增容改性的思路,在共混树脂中加入小分子增容剂,通过减弱单体分子间结晶作用力的方法,改善双酚A型氰酸酯,4,4′-双马来酰亚胺基二苯甲烷(BADCy/BDM)共混体系的熔、溶工艺特性,得到了低熔点、能溶于丙酮等溶剂的改性树脂。随着BDM含量的变化,改性树脂在丙酮中的溶解性降低,熔点呈“V”字型变化,在n(BADCy):n(BDM)=1:1时,出现最低溶点(45℃)。未固化树脂在较宽的温度范围内具有良好的稳定性,为树脂固化提供了较宽的工艺窗口。固化树脂在BDM含量为30%和40%时,呈现出两个玻璃化转变温度,而在50%含量时,只出现一个玻璃化转变温度。增容改性树脂的弯曲强度和冲击强度均高于纯氰酸酯树脂,且在BDM含量40%时出现最大值。  相似文献   

14.
以端氨基树枝状大分子PAMAM作为环氧树脂固化剂, 通过拉伸试验、 冲击试验、 DSC、 TGA研究了配比和固化温度对PAMAM与环氧树脂E-44的固化物性能的影响。 结果表明, 最佳固化温度为140℃, 但随着固化温度升高, 配比的影响表现出不同的规律: 80℃固化时, 最佳配比为0.47, 此时拉伸强度和冲击强度最佳, 玻璃化转变温度最高, 交联密度最大; 而在80℃以上固化时, 最佳配比逐渐向低配比方向移动, 140℃固化时, 最佳配比为0.28, 此时拉伸强度和冲击强度最佳, 玻璃化转变温度最高, 交联密度最大。固化物的密度和体积收缩率都是配比为0.47时最大, 而热稳定性都是配比为0.28时最佳。利用滴定法测定了固化物的固化度, 结果表明, 随着固化温度的升高, 低配比体系的固化度迅速提高并接近化学计量点配比体系的固化度。   相似文献   

15.
通过质子转移聚合,采用双酚A和三羟甲基丙烷三缩水合成了一种芳香族聚醚型超支化环氧(EHBP),将其添加到双酚A缩水甘油醚型环氧(DGEBA)中制备成杂化树脂进行增韧改性。采用酸酐固化后,利用差示扫描量热仪(DSC)和热重分析仪(TGA)对固化树脂的玻璃化转变温度和热稳定性进行了表征,并对其拉伸强度、弯曲强度和冲击强度进行了测试。结果表明向DGEBA中添加EHPE可以在不影响材料热性能和拉伸强度的情况下改善其韧性。在EHBP添加量为15%时,材料的冲击强度由纯DGEBA的19kJ/m2提高到28kJ/m2。扫描电子显微镜对材料冲击断面的形貌的表征表明,EHBP对环氧树脂的增韧机理为原位均相增韧。  相似文献   

16.
St/MMA共聚物的热性能   总被引:3,自引:0,他引:3  
通过乳聚合法合成了苯乙烯(St),甲基丙烯酸甲酯(MMA)二元共聚物(PMS),并分别利用α-甲基苯乙烯(α-MSt),丙烯酸乙酯(EA)作为改性单体代替部分苯乙烯(或MMA)合成了三元共聚物。用凝胶渗透色谱(GPC)测定了聚合物的分子量及其分布,利用热分析仪测定了聚合物的玻璃化温度及分解温度。结果表明,二元共聚物的玻璃化温度随St质量分数的增加成曲线变化,在St占50%时玻璃化强度达到最高值,α-MSt的加入,使玻璃化温度升高,EA的加入使玻璃化温度降低。二元共聚物的热分解起始温度和半衰期温度随St质量分数的增加先增加后降低,在St占50%时二者均达到最高值,三元共聚物中,加入α-MSt后,热分解起始温度升高,半衰期温度降低,EA的加入降低了起始分解温度和分解半衰期温度。  相似文献   

17.
通过熔融共混和注塑成型的方法制备了不同质量比的聚醚醚酮/聚醚酰亚胺(PEEK/PEI)合金,确定了各种质量比下时的最佳加工温度。采用热重分析、差示扫描量热分析、动态力学热分析和拉伸、三点弯曲的性能表征方法,研究了PEEK/PEI共混合金的热学和力学性能随PEEK/PEI质量比的变化趋势。结果表明,各组分比的PEEK/PEI合金均具有良好的热稳定性;随着PEEK含量增加,合金结晶度呈现上升的趋势,而玻璃化转变温度不断下降;室温时,PEEK含量对PEEK/PEI共混物的力学性能影响较弱;当测试温度稍低于PEEK玻璃化转变温度时,其力学性能随着PEEK含量的增加表现出降低的趋势;当测试温度在PEEK与PEI玻璃化转变温度之间时,合金的力学性能随着PEEK含量的增加先下降再上升。最后,基于随机森林法量化了合金质量比及热性能参数对PEEK/PEI合金力学性能的贡献程度。  相似文献   

18.
以动态硫化热塑性弹性体(TPV)为增韧材料,回收聚对苯二甲酸乙二醇酯(r-PET)为基体材料,丙烯酸接枝低密度聚乙烯(LDPE-g-AA)为相容剂,制备r-PET/TPV/LDPE-g-AA共混合金材料。用DMA、DSC、SEM分析TPV及LDPE-g-AA对r-PET玻璃化转变温度、结晶性能、断面相结构的影响,测试了共混合金材料的力学性能。结果表明:加入20%TPV,r-PET/TPV共混材料的熔融温度下降4.85℃,结晶温度提高了2.44℃,断裂伸长率及缺口冲击强度明显提高,弯曲强度和拉伸强度略有下降;加入LDPE-g-AA,r-PET/TPV共混材料玻璃化转变温度向低温方向移动,TPV球状粒子嵌入r-PET基体材料中,相容性提高;含2.5%LDPE-g-AA的r-PET/TPV/LDPE-g-AA共混合金材料,与纯r-PET相比,熔融温度下降7.19℃,断裂伸长率提高133.28%,缺口冲击强度提高59.39%,柔韧性较大幅度提高。  相似文献   

19.
以合成的双环氧基笼型倍半硅氧烷(EP-DDSQ)为改性剂,对双酚A型氰酸酯树脂(CE)进行改性,制备EP-DDSQ/CE复合材料。结果表明,EP-DDSQ加快了EP-DDSQ/CE复合材料的固化反应速率。当EP-DDSQ添加量为1wt%时,EP-DDSQ/CE复合材料冲击强度、弯曲模量和弯曲强度分别达到16.9 kJ/m2、123.6 MPa和3.37 GPa,比纯CE分别提高了80.5%、21.6%和14.0%,说明适量的EP-DDSQ能够同时提高EP-DDSQ/CE复合材料的韧性和强度。动态力学分析和热重分析结果表明,在EP-DDSQ添加适量时,EP-DDSQ/CE复合材料的玻璃化转变温度、初始分解温度和质量保持率有所提高,最大分解温度基本保持不变。介电性能分析结果表明,EP-DDSQ/CE复合材料的介电常数和介电损耗呈降低趋势,说明EP-DDSQ的加入赋予了EP-DDSQ/CE复合材料更优异的介电性能。   相似文献   

20.
通过以双酚A型环氧树脂(E-51)为树脂基体,双酚A型酚醛环氧树脂为改性剂,4,4-二氨基二苯砜(DDS)为固化剂,研制出了一种耐高温环氧胶粘剂。结果表明:酚醛环氧树脂的加入能够大幅度地提高环氧胶粘剂的耐温性能。动态热机械分析结果显示,酚醛环氧树脂的加入,使环氧树脂体系的玻璃化转变温度(Tg)从216.46℃提高到了234.03℃;在氮气氛围下,其失重5%的温度从387.03℃提高到了395.779℃;在空气氛围下,其失重5%的温度从373.95℃提高到了381.271℃。同时,酚醛环氧树脂改性环氧胶粘剂的150℃剪切强度比常规环氧树脂体系提高了35.9%,175℃剪切强度提高了10.06MPa。预期在民用航空等领域可得到广泛的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号