共查询到17条相似文献,搜索用时 78 毫秒
1.
用毛细管流变仪研究了短切炭纤维(SCF)/聚对苯二甲酸丙二酯(PTT)复合材料的流变行为;用扫描电子显微镜(SEM)和偏光显微镜(POM)观察了复合材料的断面形态结构和结晶形态。结果表明,复合材料断面暴露的SCF表面附着大量树脂,且SCF与PTT基体界面区域形成了"横晶",SCF与PTT有很好的粘接强度,界面相容性较好。复合材料熔体在不同剪切速率的流变行为不同:在剪切速率<130s-1时,黏度随剪切速率的增加而增加,属于膨胀性流体;当剪切速率>130 s-1时,黏度随着剪切速率的增加而减小,属于假塑性流体。在炭纤维含量为2%(质量分数)时,复合材料熔体的表观黏度、粘流活化能达到最大。 相似文献
2.
采用旋转流变仪、动态力学分析仪(DMA)、扫描电镜(SEM)和偏光显微镜对聚对苯二甲酸丙二酯(PTT)/炭纤维(CF)复合材料的动态力学性能、流变行为、相形态和结晶形态进行了研究。结果表明,CF在基体中无规分布并与基体具有良好的粘接性能,在降温过程中PTT仍形成球晶。PTT/CF复合材料熔体仍为假塑性流体,复数黏度随剪... 相似文献
3.
《高分子材料科学与工程》2010,26(10)
利用电子万能试验机、冲击试验机和毛细管流变仪分别研究了聚对苯二甲酸丙二酯/马来酸酐接枝丙烯腈-丁二烯-苯乙烯共聚物(PTT/ABS-g-MAH)共混合金的力学性能和流变行为。结果表明:ABS含量在3%~5%(质量分数,下同)时,共混材料的拉伸强度、冲击强度和弯曲强度达到极值,表明ABS的加入对PTT起到了一定的增强和明显的增韧作用。共混合金熔体为假塑性流体,但ABS含量的变化对共混物的表观黏度、非牛顿指数n、粘流活化能的影响较小,即对PTT的流变性能影响不大。采用ABS-g-MAH与PTT进行反应性共混,可以提高PTT的力学性能,而对加工性能影响较小。 相似文献
4.
《高分子材料科学与工程》2010,26(8)
利用毛细管流变仪、热台偏光显微镜(POM)和差示扫描量热仪(DSC),分别研究了聚对苯二甲酸丙二酯(PTT)/马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)共混合金的流变行为、结晶形态和热性能。结果表明,PTT/POE共混合金熔体为假塑性流体,POE组分含量越高,共混合金对剪切速率变化越敏感,表观黏度降低越多,POE有一定的增塑作用;由于POE与PTT间的相互作用,共混合金从熔体结晶时形成的PTT晶体尺寸明显减小,但体系起始结晶温度升高,结晶速度加快。在Tg以上,由于POE的影响,PTT组分的冷结晶焓变迅速减小。当POE组分含量超过4%时,体系中出现POE的聚集体,相分离明显。 相似文献
5.
研究了聚对苯二甲酸丙二酯(PTT)/聚对萘二甲酸乙二酯(PEN)短纤维复合材料的流变行为和力学性能,讨论了复合材料的组成、剪切应力和剪切速率及温度对熔体流变行为、熔体黏度的影响,以及不同配比复合材料的力学性能。结果表明,PTT/PEN短纤维复合材料熔体为假塑性流体,熔体表观黏度随着温度升高而下降,且熔体黏度随着PEN短纤维含量增加而不断上升。随PEN短纤维加入量的增加,复合材料的拉伸强度、断裂强度、弹性模量均明显提高,无缺口冲击强度略有提高,说明PEN短纤维的加入对PTT起到了明显的增强作用而不降低材料的韧性。 相似文献
6.
采用冲击试验机、差示扫描量热仪和热台偏光显微镜研究了聚对苯二甲酸丙二醇酯(PTT)/热塑性聚酯弹性体(TPEE)共混合金的抗冲击性能、结晶熔融行为和晶体形态。结果表明,TPEE可以提高共混材料的缺口冲击强度;共混物只有一个玻璃化转变温度,且随着TPEE含量的增加而降低,两组分具有良好的相容性;共混物在玻璃态结晶时,随着TPEE含量增加,冷结晶热焓降低,结晶峰温度降低。共混物熔体的起始结晶温度降低,但在低温时结晶速率加快,TPEE对PTT的结晶化具有促进作用。共混物中PTT形成球晶,但由于TPEE的干扰而使PTT的球晶尺寸减小,晶体形态完善程度下降。 相似文献
7.
PTT/EPDM-g-MAH/mPE共混体系的相形态与流变行为 总被引:1,自引:0,他引:1
研究了聚对苯二甲酸丙二酯/马来酸酐接枝三元乙丙橡胶/茂金属聚乙烯共混体系(PTT/EPDM-g-MAH/mPE)的相形态和流变行为。结果表明,增容剂EPDM-g-MAH可以明显改善PTT与mPE的相容性,但含量超过4%时分散相的数目增加、尺寸增大。PTT/EPDM-g-MAH/mPE共混物熔体为假塑性流体,表观黏度随剪切速率的增加而降低;当EPDM-g-MAH的含量在0%~16%范围内时,共混物的非牛顿指数先减小后增加再减小;表观黏度、粘流活化能先增加后减小,并在4%时出现极值。 相似文献
8.
采用扫描电子显微镜(SEM)和毛细管流变仪研究了玻璃纤维(GF)/聚对苯二甲酸丙二酯(PTT)复合材料的界面性能和流变行为。结果表明,材料断面较整齐,纤维与基体界面粘接牢固而拔出较少,表现出较强的整体承载负荷能力。部分暴露的GF表面仍附着大量树脂,说明纤维与基体间的界面粘接性能很好,GF的界面处理效果较好。复合材料熔体在剪切作用下为假塑性流体,表观黏度随剪切速率升高而下降。在相同剪切速率下,GF含量增加,非牛顿指数n增大,熔体黏度逐渐变小,且都低于纯PTT熔体黏度。粘流活化能随GF含量的增加先增加后降低。 相似文献
9.
以膨胀石墨为基体,用硝酸铁、碳酸铵等物质对其进行修饰,结合化学气相沉积工艺,原位制备出石墨烯/碳纳米管复合粉体材料;利用扫描电镜对复合粉体进行了表征.采用熔融混炼的方法制备PBT/石墨烯/碳纳米管复合材料并测试了其表面电阻.研究结果表明:该方法可以制备出性能优异的石墨烯/碳纳米管复合粉体材料,将该复合粉体加入到PBT中所制备的复合材料具有优良的电性能;当复合粉体加入量为5%时,PBT/石墨烯/碳纳米管复合材料的表面电阻可达到106 Ω. 相似文献
10.
采用环状对苯二甲酸丁二醇酯(CBT)原位聚合制备了玻璃纤维(GF)增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。研究了聚合温度及催化剂用量对PCBT粘均分子量、结晶度以及GF/PCBT复合材料力学性能的影响。结果表明,随着聚合温度的升高,PCBT的粘均分子量及结晶度逐渐增大并趋于稳定,GF/PCBT复合材料力学性能也不断增大;当聚合温度为210℃时,PCBT的粘均分子量为7.16×104 g/mol,结晶度为43.9%,GF/PCBT复合材料的拉伸和弯曲强度分别为(271.44±3.40)和(257.70±3.73)MPa。随着催化剂用量的增大,PCBT的粘均分子量和结晶度逐渐增大并趋于稳定,复合材料力学性能不断增强;当催化剂用量为0.4%(质量分数)时,PCBT的粘均分子量为7.13×104 g/mol,结晶度为44.4%,GF/PCBT复合材料的拉伸和弯曲强度分别为(265.10±3.31)和(260.30±2.03)MPa。 相似文献
11.
碳纳米管添加到聚合物中对其结构和性能都有深远的影响,本文通过浓硝酸对碳纳米管改性后,采用水相沉淀聚合的方法制备了聚丙烯腈/碳纳米管复合材料,同时研究了碳纳米管经过浓硝酸处理后其化学结构的变化;探讨了碳纳米管对聚丙烯腈复合材料热学和结晶性的影响。研究表明,浓硝酸常温处理不仅能除去杂质,还可以在碳纳米管表面引入羧基等含氧基团;加入碳纳米管后,聚丙烯腈的预氧化温度有一定程度的提前,放热量明显降低,同时对聚合物的结晶度也有一定程度的影响。 相似文献
12.
PA6/PTT共混物的吸水性和力学性能 总被引:2,自引:0,他引:2
由螺杆挤出机制备了尼龙6(PA6)和聚对苯二甲酸丙二醇酯(PTT)的共混物PA6/PTT。通过浸水实验,结合扫描电镜观察和热分析,研究了不同组分PA6/PTT共混物的吸水性能,并进行了相关力学性能测试。结果表明,PA6/PTT共混物吸水率随PTT含量增加而减小,即PTT的加入有效抑制了PA6的吸水率;在相同吸水条件下,PA6/PTT共混物的一般力学性能明显优于PA6,当PTT含量为20%时,共混物吸水后的拉伸、弯曲强度分别较PA6提高了20.98%和71.73%。 相似文献
13.
C/SiC复合材料的常压制备与性能研究 总被引:1,自引:0,他引:1
采用聚碳硅烷作为碳化硅先驱体, 以二维0°/90°正交编织碳布叠层后作为增强体, 采用真空压力浸渍的方法制备了C/SiC复合材料, 研究了裂解温度和浆料浓度对复合材料性能的影响. 结果表明: 复合材料的弯曲强度随着裂解温度的升高以及浆料浓度的增加都呈增加趋势; 基体在纤维束内部分布均匀, 但依然有一些小气孔存在; 在1100℃时, 基体中开始生成一定量的β-SiC相, 复合材料的三点弯曲强度达到232MPa, 断裂韧性达到10.50MPa·m1/2. 在断裂过程中表现出明显的韧性断裂, 断口有较长的纤维拔出. 相似文献
14.
采用自行合成的不同相对分子质量(n)的热致性液晶聚合物(TLCP)与玻璃纤维(GF)混杂改性不饱和聚酯(UP),固定TLCP用量为5%(质量分数),研究了UP/GF/TLCP复合材料的流变性能和力学性能,分析了材料的冲击断面微观形貌。结果表明,TLCP的相对分子质量(n)对复合材料流变性能和力学性能有很大影响,当n不大于10时,复合材料的流变性能和力学性能随n的增加而提高。当n=10时,复合材料的流动性能和弯曲性能最好,熔体流动速率达到164.1 g/(10 min)。常温下弯曲强度和弯曲模量达到82.88 MPa和6.03 GPa,分别提高了31.3%和30.8%。当n=50时,复合材料的冲击强度最佳,达到5.196 kJ/m2,是未加TLCP材料的1.62倍,冲击断面形貌表明,TLCP相对分子质量对复合材料的界面粘合作用影响显著。 相似文献
15.
采用一种新的固相双螺杆挤出法制备回收PET基复合材料与传统的熔融挤出法进行对比,所用的无机填料为片状的滑石粉及球状的碳酸钙。通过考察熔体流动速率的变化评价回收PET的降解程度,DSC考察结晶性能,SEM观察填料分散情况,并测定弯曲、冲击性能及热变形温度。研究发现,相对于熔融挤出,固相挤出制备rPET复合材料有效缓解rPET降解程度,无机填料分散更细微,结晶度提高,力学性能改善。并且发现用C aCO3填充rPET时,材料性能的改善则不如T alc显著。 相似文献
16.
使用纤维素酶和木聚糖酶(酶活比9:1)组成总酶活为10 U/mL的复合酶液,以桉木浆为原料在50℃水解12 h,获得平均长度约625 nm、平均直径50 nm的棒状纳米晶纤维素(NCC)。以所制备的NCC为原料,采用真空抽滤法获得了透明柔性NCC膜,其弹性模量为8178 MPa,抗张强度为33 MPa,透光度为90.86%,裂断应变为99%,表明NCC膜具有良好的力学性能和透光性,可用作柔性器件的基底材料。然后,进一步在NCC中加入气敏材料纳米二氧化钛(TiO2)胶体,采用真空抽滤法获得了TiO2/NCC复合膜。研究结果表明,添加少量TiO2(1%、2%、4%)的TiO2/NCC复合膜依然具有良好的透光度(90%以上)与物理性能(弹性模量4906 MPa、抗张强度37 MPa、裂断应变45%)。在室温下,TiO2/NCC复合膜对氨气具有气敏响应,以及良好的选择性和稳定性。这些研究结果为制备高性能的TiO2/NCC可穿戴气敏传感器的进一步研究奠定了良好基础。 相似文献
17.
目的 制备特种产品用抗静电包装材料。方法 采用碳纳米管(CNT)对线性低密度聚乙烯(LLDPE)进行熔融复合改性,研究CNT含量对LLDPE电学性能、力学性能、结晶行为及热稳定性的影响,并对确定的最优体系进行应用性能考核。结果 CNT具有较大的长径比,直径为10~20nm,纯度较高。LLDPE/CNT复合材料表面电阻率变化呈现明显的“渝渗”现象,当CNT质量分数从3%增加至5%时,其表面电阻率由1013Ω骤降至105Ω。随着CNT含量增加,LLDPE/CNT复合材料的拉伸强度增加,断裂伸长率和冲击强度有所降低。CNT没有改变LLDPE的熔融行为,但其结晶度和熔点随着CNT含量增加而略有降低。LLDPE/CNT复合材料起始降解温度和最大降解速率处温度随着CNT含量增加而增加。CNT质量分数为4%的LLDPE/CNT复合材料综合性能最优,热氧老化后其表面电阻率几乎无变化,相比纯LLDPE,其熔融指数有所下降,氧化诱导时间大幅提升。结论 通过CNT对LLDPE树脂进行改性,制备了综合性能优良的抗静电LLDPE/CNT复合材料,在特种产品包装领域具有... 相似文献