首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
吴翔  廖军  刘方舟 《湖南有色金属》2013,29(1):44-46,78
采用高能球磨法制备WC—Co粉末,分别在低压和真空条件下制备WC-20%Co硬质合金,通过对合金性能的检测和金相组织的观察,研究了球磨时间和烧结工艺对硬质合金性能的影响。结果表明,球磨时间对硬质合金性能和组织结构有明显的影响;通过控制适当的球磨时间,町提高硬质合金的硬度和高韧性;通过调节工艺,真空烧结也可以提高合金的性能,低压烧结对粗颗粒WC为原料的合金的综合性能提高不明显。  相似文献   

2.
低压烧结对硬质合金组织和性能的影响   总被引:1,自引:2,他引:1  
通过配制不同粒度的WC粉末,分别在低压和真空条件下烧结制备WC-6Co硬质合金,采用扫描电镜分析、光学金相检测、显微硬度试验、钴磁检测、矫顽磁力检测和抗弯强度检测等方法,对比研究了低压烧结和真空烧结制备的硬质合金的显微组织和性能。结果表明,与真空烧结相比,低压烧结有效地降低了合金的孔隙度,增大了合金的密度,提高了合金的综合性能;低压烧结对合金的组织和性能的影响程度与原料WC粒度有关,低压烧结对粗颗粒WC为原料的合金的综合性能提高不明显。  相似文献   

3.
低钴含量粗颗粒WC-Co硬质合金的真空烧结   总被引:1,自引:0,他引:1  
文章分析了不同预烧和烧结工艺条件对低钴含量粗颗粒WC- Co 硬质合金性能的影响, 探索了采用真空烧结获得高性能低钴含量粗颗粒WC- Co硬质合金的可行性。  相似文献   

4.
0.2微米级超细晶硬质合金的烧结行为   总被引:3,自引:2,他引:1  
近10年来,晶粒度在0.3~0.6 μm内的超细晶硬质合金已获得充分的工业化应用.无论是基于开拓新的应用领域的需要还是继续提高现有PCB刀具的使用寿命,人们都在持续研究0.2 μm级乃至纳米品硬质合金.本研究采用传统硬质合金生产工艺制备含稀土的、0.2μm超细晶硬质合金,研究烧结温度对WC形貌、粒度及钴相大小的影响;通过扫描电镜和能谱分析观察和分析合金中碳化铬及稀土的分布.结果表明,随着烧结温度升高,WC晶粒有明显长大的趋势,且颗粒长大与颗粒形状的规则化同时进行.在传统的生产工艺条件下,纳米稀土氧化物Y2O3对WC晶粒长大的抑制作用不明显,但能抑制钴相长大.稀土作为第三相在合金中均匀分布.  相似文献   

5.
采用超细WC粉末(d≤500 nm)制备的超细晶硬质合金,因WC和Co粉粒度极细,比表面积大,坯体压制成形后,等待烧结过程中容易受到环境氧的影响,使坯体表面与芯部氧含量不同而形成氧梯度,影响硬质合金材料性能。采用创新开发的氧化预处理工艺,结合自主研发设计的预处理设备,对WC-9%Co超细晶硬质合金坯体进行烧结前氧化预处理,再进行后续的低压烧结。对比分析了未经预处理与经过氧化预处理的坯体各部分氧含量,以及烧结后合金各部分磁饱和(σs)、抗弯强度(TRS)、洛氏硬度(HRA)、断裂韧性(KIC)、矫顽磁力(Hc)等材料性能。结果表明:经过氧化预处理后,坯体中总的氧含量增加,氧含量分布更均匀;烧结后,合金的磁饱和显著降低且分布更均匀,同时抗弯强度和硬度等性能得到有效改善,而致密度、孔隙度未发生变化。  相似文献   

6.
超细WC-Co硬质合金的微波烧结研究   总被引:2,自引:0,他引:2  
采用微波烧结工艺制备了WC-Co超细硬质合金,并研究了烧结工艺对烧结样品性能的影响。结果表明:微波烧结与真空烧结WC-Co超细硬质合金相比烧结温度更低,保温时间更短,在1300℃的烧结温度下瞬时保温(0min),密度就可达到14.27g/cm3,而且在烧结温度1350℃保温0min时硬度HRA达到94.0,并且样品WC晶粒尺寸在烧结过程中长大不明显,随着烧结温度的提高和保温时间的增加WC晶粒尺寸的变化不大。  相似文献   

7.
高能球磨和放电等离子体烧结制备超细WC-8Co硬质合金   总被引:2,自引:0,他引:2  
以0 .8 1μm的WC粉和1.3 5 μm的Co粉为原料,采用高能球磨制备了粉末比表面积为6.82m2 ·g- 1 ,粉末粒度为5 9.4nm的WC 8Co混合粉末。将此纳米粉末采用放电等离子体烧结(SPS)制备了WC晶粒度为0 .5~0 .6μm、硬度为HRA93 .5的超细硬质合金。研究了SPS烧结温度和添加晶粒抑制剂对显微组织与HRA硬度的影响。  相似文献   

8.
采用高能球磨制备纳米WC-3Co粉末,再通过放电等离子烧结(spark plasma sintering,SPS)制备超细晶WC-3Co硬质合金。研究SPS工艺参数对合金致密度、显微组织和力学性能的影响,并对SPS和热压工艺(hotpressing,HP)进行对比。结果表明:SPS可实现WC-3Co粉末的低温快速致密化。升高温度或提高压力都使得合金的致密度提高,同时导致WC晶粒长大。SPS较HP升温速率快且烧结时间更短,合金组织更加均匀,在1 300℃保温5 min、烧结压力为40 MPa的条件下所制备的合金具有最佳综合性能,其平均晶粒度为0.32μm,相对密度、硬度、抗弯强度、断裂韧性分别为99.3%、2257 HV30、1 906 MPa、10.36 MPa.m1/2。而在1 450℃、压力为50 MPa、保压5 min条件下,热压合金的致密度、硬度和断裂韧性分别为99.6%、2 264 HV30和11.01 MPa.m1/2,但抗弯强度只有1 301 MPa,平均晶粒度为0.47μm。  相似文献   

9.
硬质合金的烧结气氛   总被引:2,自引:0,他引:2  
  相似文献   

10.
本文讨论了硬质合金真空烧结的工艺制度原则及真空烧结炉的现状和发展。  相似文献   

11.
采用粉末冶金法制备WC-0.5Cr3C2-0.5Co和WC-8.2(W、Ta、Ti)C-1.0Co两种合金粉末,以1 480℃/90 min真空烧结工艺和1480℃/90 min/5MPa低压烧结工艺分别制备出WC-0.5Cr3C2-0.5Co和WC-8.2(W、Ta、Ti)C-1.0Co两种无粘结相硬质合金。利用X射线衍射分析技术研究合金的物相,利用扫描电镜与能谱仪对合金微观组织结构进行观察与分析。结果表明:真空烧结工艺制备的合金晶粒细小、硬度高;低压烧结工艺制备的合金致密度较高、晶粒粗大、硬度降低。此外,Ti原子的存在使WC晶界能各向异性,从而造成W原子在粘结相中的各向异性溶解-析出,导致形成少量的板条状WC晶粒。  相似文献   

12.
除球磨时间、碳含量、抑制剂及烧结方式对超细晶硬质合金的性能影响较大外,WC粉和Co粉原料的选择也对超细晶硬质合金有重要的影响。采用不同球形度、氧含量和硫含量的Co粉作为粘结相,在相同的工艺条件下,制备成分相同的超细晶硬质合金。通过考察制备合金的抗弯强度(TRS)、断裂韧性(KIC)和HV30等力学性能,评定不同Co粉对合金性能的影响。结果表明:在相同的工艺条件下,随着球形度增加,Co粉在混合料中分布更均匀,合金的TRS随之提高,但硬度和KIC变化不大;合金的TRS和硬度随着Co粉松装密度的增大略有下降;Co粉中氧含量及杂质(如S等)含量对超细晶硬质合金性能影响重大,过量的氧和杂质能使超细晶硬质合金综合性能大幅降低。  相似文献   

13.
粗大钴团在硬质合金烧结过程中的演变   总被引:1,自引:0,他引:1  
钴池是降低硬质合金抗弯强度的一种缺陷,常以内表面存在一层钴膜的孔洞形式存在,压坯中的粗钴团是形成合金中钴池的主要因素。本文在90%WC+10%Co(质量分数)混合粉末中掺入粗大钴团(100~400μm),压制成形后分别在950、1 290、1 310、1 330、1 350和1 410℃烧结,保温时间为5 min。用SEM和金相显微镜研究粗钴团在各温度段的形貌,结果表明:在较低温度(≤1 310℃)烧结后,合金中钴团发生固相烧结,以蜂窝结构存在于孔洞中;继续升高温度,钴部分转变为液相并少量渗入合金组织中,冷却后留下孔,且孔表面有岛状的钴;当烧结温度≥1 410℃时,过量液相铺展在孔内表面,冷却后在合金孔内表面形成一层钴膜。  相似文献   

14.
钴作为硬质合金应用最广泛的黏结剂,存在资源稀缺、成本高昂以及WC-Co硬质合金耐腐蚀性能较差等问题,综合考量生产成本与改善性能,本研究采用铁镍部分代替钴组成复合黏结剂,以其制备超细硬质合金,研究其显微组织和力学、耐蚀耐磨性能的关系。结果表明,黏结相中Fe/Ni质量分数比增加,使得合金WC晶粒细化和黏结相分布不均,合金的硬度和抗弯强度分别提高与降低。合金在中性NaCl溶液中的耐腐蚀性能评估采用极化曲线测试与浸泡实验,黏结相添加Ni能提高合金耐蚀性,归因于Ni的钝化特性与促进腐蚀产物膜的形成。硬质合金摩擦系数和磨损率与Fe/Ni质量比呈负相关,合金耐磨性的提高主要归因于黏结相的强度增强和WC晶粒细化合金硬度提高。   相似文献   

15.
采用高能球磨、真空烧结工艺制备WC-13(TiC+TaC)-8Co-1(VC+Cr3C2)硬质合金,研究了不同烧结温度对WC-TiC-TaC-Co硬质合金微观组织、力学性能和磁性能的影响。结果表明,提高烧结温度有利于提高合金的致密度,但是过高的烧结温度会导致晶粒长大,使合金致密度下降;合金的硬度、抗弯强度和矫顽力随着真空烧结温度的提高先增大后减小;相对磁饱和强度随着烧结温度的升高呈现下降的趋势;1 400℃烧结的合金综合性能较好,合金的相对密度99.6%、抗弯强度1 992 MPa,硬度92.3 HRA,矫顽力34.3 k A/m,相对磁饱和强度为76.5%。  相似文献   

16.
采用不同氮气压力烧结制备WC-TiC-NbC-Co合金,再使用CVD方法进行涂层.通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射分析仪(XRD)、表面粗糙度仪和划痕测试仪对烧结后及涂层后的样品表面形貌、成分、物相、粗糙度及涂层结合力进行表征与测量.结果表明,与真空烧结相比,在氮气氛中烧结的WC-TiC-NbC-Co硬质合金样品的表面形成了以TiC相为主的梯度层,梯度层厚度随着氮气压力的升高而增大.当氮气压力为15 kPa时,梯度层厚度达到了10μm,当氮气压力为10 kPa时,样品与CVD涂层具有最好的结合力.说明适当的氮气压力可以在合金表面形成一定厚度梯度层,并有助于提高涂层结合力.  相似文献   

17.
采用不同氮气压力烧结制备WC-TiC-NbC-Co合金,再使用CVD方法进行涂层.通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射分析仪(XRD)、表面粗糙度仪和划痕测试仪对烧结后及涂层后的样品表面形貌、成分、物相、粗糙度及涂层结合力进行表征与测量.结果表明,与真空烧结相比,在氮气氛中烧结的WC-TiC-NbC-Co硬质合金样品的表面形成了以TiC相为主的梯度层,梯度层厚度随着氮气压力的升高而增大.当氮气压力为15 kPa时,梯度层厚度达到了10μm,当氮气压力为10 kPa时,样品与CVD涂层具有最好的结合力.说明适当的氮气压力可以在合金表面形成一定厚度梯度层,并有助于提高涂层结合力.  相似文献   

18.
采用常规微波烧结法制备WC-Co硬质合金时,表层区域出现严重的脱碳现象,导致表层和中心区域的组织显著不同,即产生核壳结构,对合金的力学性能造成不利影响。本文作者以WC粉和Co粉为原料粉末,采用微波烧结法制备88%WC-12%Co(YG12)和94%WC-6%Co(YG6)硬质合金,在混料时添加炭黑,避免合金中脱碳相的生成。检验表明:当炭黑添加量(质量分数)接近0.2%时,YG12和YG6的抗弯强度(TRS)分别达到3 109和2 642 MPa;硬度(HRA)分别为88.7和89.8。此时,合金表面和中心区域具有一致的显微组织结构,没有发现脱碳相η(W3Co3C)。但当炭黑添加量超过0.2%时,大量析出的石墨相对合金的力学性能,尤其对硬度产生不利影响,当炭黑添加量为0.4%时,YG12和YG6的抗弯强度分别只有2 465 MPa和2 213 MPa。  相似文献   

19.
采用不同氮气压力烧结制备WC-TiC-NbC-Co合金,再使用CVD方法进行涂层.通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射分析仪(XRD)、表面粗糙度仪和划痕测试仪对烧结后及涂层后的样品表面形貌、成分、物相、粗糙度及涂层结合力进行表征与测量.结果表明,与真空烧结相比,在氮气氛中烧结的WC-TiC-NbC-Co硬质合金样品的表面形成了以TiC相为主的梯度层,梯度层厚度随着氮气压力的升高而增大.当氮气压力为15 kPa时,梯度层厚度达到了10μm,当氮气压力为10 kPa时,样品与CVD涂层具有最好的结合力.说明适当的氮气压力可以在合金表面形成一定厚度梯度层,并有助于提高涂层结合力.  相似文献   

20.
采用不同氮气压力烧结制备WC-TiC-NbC-Co合金,再使用CVD方法进行涂层.通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射分析仪(XRD)、表面粗糙度仪和划痕测试仪对烧结后及涂层后的样品表面形貌、成分、物相、粗糙度及涂层结合力进行表征与测量.结果表明,与真空烧结相比,在氮气氛中烧结的WC-TiC-NbC-Co硬质合金样品的表面形成了以TiC相为主的梯度层,梯度层厚度随着氮气压力的升高而增大.当氮气压力为15 kPa时,梯度层厚度达到了10μm,当氮气压力为10 kPa时,样品与CVD涂层具有最好的结合力.说明适当的氮气压力可以在合金表面形成一定厚度梯度层,并有助于提高涂层结合力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号