首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A new procedure for the direct determination of picomolar levels of cobalt in seawater is presented. Cathodic stripping voltammetry is preceded by adsorptive accumulation of the cobalt-nioxime (cyclohexane-1,2-dione dioxime) complex from seawater containing 6 μM nioxime and 80 mM ammonia at pH 9.1, onto a hanging mercury drop electrode, followed by reduction of the adsorbed species. The reduction current is catalytically enhanced by the presence of 0.5 M nitrite. Optimized conditions for cobalt include a 30 s adsorption period at -0.7 V and a voltammetric scan using differential pulse modulation. According to the proposed reaction mechanism, dissolved Co(II) is oxidized to Co(III) upon addition of nioxime and high concentrations of ammonia and nitrite; a mixed Co(III)-ammonia-nitrite complex is adsorbed on the electrode surface; the Co(III) is reduced to Co(II) (complexed by nioxime) during the voltammetric scan, followed by its chemical reoxidation by the nitrite, initiating a catalytically enhanced current. A detection limit of 3 pM cobalt (at an adsorption period of 60 s) enables the detection of this metal in uncontaminated seawater using a very short adsorption time. UV digestion of seawater is essential, as part of the cobalt may occur strongly complexed by organic matter and rendered nonlabile. The method was applied successfully to the determination of the distribution of cobalt in the water column of the Mediterranean.  相似文献   

2.
In this work, the electrochemical behavior of nonredox-active poly-L-lysine dendrigraft molecules of four different generations was investigated at the interface between two immiscible electrolyte solutions (ITIES). The influence of the dendrigraft generation on the electrochemical response, sensitivity of the calibration curves, and limit of detection was studied. Cyclic voltammetry at the ITIES revealed that the sensitivity increased (1840 to 25?800 nA μM(-1)) and the limit of detection decreased (11.10 to 0.65 μM) as the dendrigraft generation increased from generation G2 through to generation G5, respectively. The results are compared to those for protein voltammetry at the ITIES. Our studies suggest that the sensitivity expected for a synthetic ionized macromolecule can be predicted on the basis of its net charge and its diffusion coefficient. However, electrochemistry at the ITIES demonstrates a greater sensitivity toward proteins, which is attributed to their tertiary structure.  相似文献   

3.
A new procedure for the direct determination of picomolar levels of iron in seawater is presented. Cathodic stripping voltammetry (CSV) is preceded by adsorptive accumulation of the iron(III)-2,3-dihydroxynaphthalene (DHN) complex from seawater, containing 20 microM DHN at pH 8.0, onto a static mercury drop electrode, followed by reduction of the adsorbed species. The reduction current is catalytically enhanced by the presence of 20 mM bromate. Optimized conditions include a 60-s adsorption period at -0.1 V and a voltammetric scan using sampled dc modulation at 10 Hz. In these conditions, a detection limit of 13 pM iron in seawater was achieved which can be lowered further by extending the adsorption time to 300 s. The new catalytic CSV method is approximately 5 times more sensitive than existing CSV methods and was tested on samples from the Atlantic Ocean.  相似文献   

4.
The detection of peptides is an important bioanalytical challenge, as they are a generic class of potent molecules of biomedical and biopharmaceutical significance. In this work, the electrochemistry of seven oligopeptides at microscaled interfaces between two immiscible electrolyte solutions (microITIES) was investigated. Their transfer across the polarized interface was assisted by dibenzo-18-crown-6 (DB18C6). The ion transfer potentials of these oligopeptides were dependent on their hydrophobicities and their interaction with DB18C6. Micropore arrays, which were fabricated in silicon by a combination of wet and dry etch techniques, were used to enhance mass transfer and thus analytical sensitivities. The use of a gellified organic phase allowed the implementation of voltammetric stripping techniques at the liquid-organogel interface. The combination of interface miniaturization and stripping voltammetry provided limits of detection at submicromolar concentration levels. The sensitivities (calibration graph slopes) were -3205 nA microM(-1) cm(-2) for Phe-Phe, -1791 nA microM(-1) cm(-2) for Leu-Leu, -6014 nA microM(-1) cm(-2) for Lys-Lys, and -9611 nA microM(-1) cm(-2) for Lys-Lys-Lys. Mixtures of peptides were also investigated with this technique, illustrating the possibility to detect certain mixture combinations.  相似文献   

5.
In this report, the fabrication of vertically aligned carbon nanotube nanoelectrode array (VACNT-NEA) by photolithography method is presented. Electrochemical impedance spectroscopy as well as cyclic voltammetry was performed to characterize the arrays with respect to different diffusion regimes. The fabricated array illustrated sigmoidal cyclic voltammogram with steady state current dominated by radial diffusion. The fabricated VACNT-NEA and high density VACNTs were employed as electrochemical glutamate biosensors. Glutamate dehydrogenase is covalently attached to the tip of CNTs. The voltammetric biosensor, based on high density VACNTs, exhibits a sensitivity of 0.976 mA mM(-1) cm(-2) in the range of 0.1-20 μM and 0.182 mA mM(-1) cm(-2) in the range of 20-300 μM glutamate with a low detection limit of 57 nM. Using the fabricated VACNT-NEA, the sensitivity increases approximately to a value of 2.2 Am M(-1) cm(-2) in the range of 0.01 to 20 μM and to 0.1 A mM(-1) cm(-2) in the range of 20-300 μM glutamate. Using this electrode, a record of low detection limit of 10 nM was achieved for glutamate. The results prove the efficacy of the fabricated NEA for low cost and highly sensitive enzymatic biosensor with high sensitivity well suited for voltammetric detection of a wide range of clinically important biomarkers.  相似文献   

6.
Microfluidic chip devices are shown to be attractive platforms for performing microscale voltammetric analysis and for integrating voltammetric procedures with on-chip chemical reactions and fluid manipulations. Linear-sweep, square-wave, and adsorptive-stripping voltammograms are recorded while electrokinetically "pumping" the sample through the microchannels. The adaptation of voltammetric techniques to microfluidic chip operation requires an assessment of the effect of relevant experimental variables, particularly the high voltage used for driving the electroosmotic flow, upon the background current, potential window, and size or potential of the voltammetric signal. The exact potential window of the chip detector is dependent upon the driving voltage. Manipulation of the electroosmotic flow opens the door to hydrodynamic modulation (stopped-flow) and reversed-flow operations. The modulated analyte velocity permits compensation of the microchip voltammetric background. Reversal of the driving voltage polarity offers extended residence times in the detector compartment. Rapid square-wave voltammetry/flow injection operation allows a detection limit of 2 x 10(-12) mol (i.e., 2 pmol) of 2,4,6-trinitrotoluene (TNT) in connection with 47 nL of injected sample. The ability of integrating chemical reactions with voltammetric detection is demonstrated for adsorptive stripping measurements of trace nickel using the nickel-dimethylglyoxime model system. The voltammetric response is characterized using catechol, hydrazine, TNT, and nickel as test species. The ability to perform on-chip voltammertic protocols in advantageous over nanovial voltammetric operations that lack a liquid-handling capability. Coupling the versatility of microfluidic chips with the rich information content of voltammetry thus opens an array of future opportunities.  相似文献   

7.
Alanine aminotransferase has been stabilized by using chemical modification with both bis(imidates) (of varying length) and succinic anhydride. The voltammetric behavior of the native enzyme and its various modified forms has been studied by using both cyclic voltammetry and differential pulse adsorptive voltammetry. A distinctive accumulation pattern was found for each of the stabilized enzymes at the static mercury drop electrode with respect to the native alanine aminotransferase. Adsorptive voltammetry was demonstrated to be a useful technique to assess the extent of chemical modification of this enzyme, which is indirectly related to their stability for use in biotechnological processes. The sue of differential pulse adsorptive voltammetry, after a preconcentration of the enzyme for 300 s at the electrode surface, has yielded a detection limit of 1.0 x 10(-9) M.  相似文献   

8.
In this work, the organic compound 2-mercaptobenzimidazole was covalently bound on the surface of a glassy carbon rod, via silanization, yielding a material capable of selectively complexing Hg(2+) ions. This material was applied as an electrode for voltammetric determination of mercury(II) following its nonelectrolytic preconcentration. After exchanging the medium, the voltammetric measurements were carried out by anodic stripping in the differential pulse mode (pulse amplitude, 50 mV; scan rate, 1.25 mV s(-)(1)) using 10(-)(2) mol L(-)(1) NaSCN solution as supporting electrolyte. An anodic stripping peak was obtained at 0.06 V (vs SCE) by scanning the potential from -0.3 to +0.3 V. After a 5 min preconcentration period in a pH 4.0 Hg(2+) solution, this electrode shows increasing voltammetric response in the range 0.1-2.2 μg mL(-)(1), with a relative standard deviation of 5% and a practical detection limit of 0.1 μg mL(-)(1) (5.0 × 10(-)(7) mol dm(-)(3)). Compared with the conventional stripping approach, this chemically modified glassy carbon electrode procedure presented good discrimination against interference from Cu(II) in up to 10-fold molar excess.  相似文献   

9.
Liu G  Lin Y 《Analytical chemistry》2005,77(18):5894-5901
An electrochemical sensor for detection of organophosphate (OP) pesticides and nerve agents using zirconia (ZrO2) nanoparticles as selective sorbents is presented. Zirconia nanoparticles were electrodynamically deposited onto the polycrystalline gold electrode by cyclic voltammetry. Because of the strong affinity of zirconia for the phosphoric group, nitroaromatic OPs strongly bind to the ZrO2 nanoparticle surface. The electrochemical characterization and anodic stripping voltammetric performance of bound OPs were evaluated using cyclic voltammetric and square-wave voltammetric (SWV) analysis. SWV was used to monitor the amount of bound OPs and provide simple, fast, and facile quantitative methods for nitroaromatic OP compounds. The sensor surface can be regenerated by successively running SWV scanning. Operational parameters, including the amount of nanoparticles, adsorption time, and pH of the reaction medium have been optimized. The stripping voltammetric response is highly linear over the 5-100 ng/mL (ppb) methyl parathion range examined (2-min adsorption), with a detection limit of 3 ng/mL and good precision (RSD = 5.3%, n = 10). The detection limit was improved to 1 ng/mL by using 10-min adsorption time. The promising stripping voltammetric performances open new opportunities for fast, simple, and sensitive analysis of OPs in environmental and biological samples. These findings can lead to a widespread use of electrochemical sensors to detect OP contaminates.  相似文献   

10.
The direct and reliable electrochemical detection of DNA is of paramount importance to the development of modern DNA hybridization chips, for the detection of nucleic acids following their electrophoretic separations, or for the sensing of DNA damage and interactions. Such solid electrode voltammetric measurements of nucleic acids have been traditionally hampered by the large solvent decomposition background current that obscures the oxidation signals of the purine nucleobases. This paper reports on the use of adsorptive stripping square-wave voltammetry, in connection with the "moving average baseline correction" approach, for monitoring ultratrace levels of DNA and RNA. Compared to other baseline-fitted or background-subtraction protocols, the moving average baseline scheme is particularly effective in isolating the small purine nucleobase peaks, which appear as small shoulders on the steep background discharge contribution. The remarkably flat baseline thus obtained (up to extreme potentials) leads to a dramatic lowering of the detection limits to the femtomole level and to a performance that compares favorably with that of computerized chronopotentiometric measurements of nucleic acids. Combined with the speed of square-wave voltammetric measurements, such developments should expand the role of voltammetry in DNA diagnostics and nucleic acid research.  相似文献   

11.
This paper describes the development of 1-methyl-3-butylimidazolium chloride ionic liquid/cobalt hexacyanoferrate nanoparticle modified multi-walled carbon nanotubes nanocomposite paste electrode for the electrocatalytic and adsorptive stripping voltammetric and impedimetric determination of diclofenac (DIC) in real samples. The nanocomposite was prepared by a simple chemical method and was characterised by scanning electron microscopy, Fourier transform infrared spectroscopy and atomic absorption spectroscopy. Also, the electrochemical behaviours of the modified electrode and the electrocatalytic oxidation of DIC were investigated in detail by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. The kinetic parameters such as electron transfer coefficient, and apparent rate constant for the redox reaction between DIC and the modified electrode were also determined using electrochemical approaches. It was found that the modified electrode exhibited excellent electrocatalytic activity toward the oxidation of DIC, and under the optimised conditions, the linear response range and detection limit were found to be 1.0–100.0 and 0.3 μM, respectively using the differential pulse voltammetry method. The proposed method was applied for the sensitive and selective determination of diclofenac in the urine samples and pharmaceutical formulations with satisfactory results.  相似文献   

12.
A sensitive method for the detection of cholera toxin (CT) using an electrochemical immunosensor with liposomic magnification followed by adsorptive square-wave stripping voltammetry is described. Potassium ferrocyanide-encapsulated and ganglioside (GM1)-functionalized liposomes act as highly specific recognition labels for the amplified detection of cholera toxin. The sensing interface consists of monoclonal antibody against the B subunit of CT that is linked to poly(3,4-ethylenedioxythiophene) coated on Nafion-supported multiwalled carbon nanotube caste film on a glassy carbon electrode. The CT is detected by a "sandwich-type" assay on the electronic transducers, where the toxin is first bound to the anti-CT antibody and then to the GM1-functionalized liposome. The potassium ferrocyanide molecules are released from the bounded liposomes on the electrode by lyses with methanolic solution of Triton X-100. The released electroactive marker is measured by adsorptive square-wave stripping voltammetry. The sandwich assay provides the amplification route for the detection of the CT present in ultratrace levels. The calibration curve for CT had a linear range of 10(-14)-10(-7)g mL(-1). The detection limit of this immunosensor was 10(-16) g of cholera toxin (equivalent to 100 microL of 10(-15) g mL(-1)).  相似文献   

13.
Direct determination of the adsorption free energy for extremely low surface coverages (Henry limit) requires the use of a technique that must be highly sensitive to both the amount and the energetics of adsorbed molecules. Herein, we demonstrate that diffusional surface voltammetry (DSV), which embodies film and stripping voltammetries as two limiting cases, can be used to achieve this goal for electroactive adsorbates. To this end, a general analytical expression for the surface voltammetric peak potential of DSV is derived, which covers the full range of scan rates, bulk concentrations, and adsorptivity of the freely diffusing form of the redox couple, so that the surface redox conversion can be either equilibrated with or transport-isolated from the solution bulk. Strategies to get a quantitative insight into the energetics of electrosorption are outlined, and diagnostic criteria for their application are developed. In particular, it is demonstrated that DSV can be used in its stripping mode to determine group contributions to the adsorption free energy, avoiding possible interferences from intermolecular interactions or formation of oligomeric species. Application of this protocol to the reductive desorption of distinct homologous series of alkylthiolates adsorbed at mercury electrodes has allowed us to determine the contributions of the CH(n) groups (n = 0-3) to the free energy of adsorption of these molecules. These estimates are shown to correlate linearly with the corresponding group contributions to the octanol-water partition coefficient, revealing that adsorption of individual hydrocarbon groups at the mercury/solution interface scales with their hydrophobicity. Overall, the present work enlarges the capability of surface voltammetry to probe adsorption energetics down to the micromolar level, and it represents a first step toward the development of a unified treatment of stripping and film voltammetries.  相似文献   

14.
Kim Y  Amemiya S 《Analytical chemistry》2008,80(15):6056-6065
A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.  相似文献   

15.
A procedure is presented by which mercury and copper are determined simultaneously in seawater and dilute acid (0.01 M HCl) by anodic stripping voltammetry using gold microwire electrodes. It was found that anion (halide) adsorption is the cause for a gradual decrease in the height and potential of the mercury peak. The effect is eliminated by including an anion desorption step in the analysis at -0.8 V prior to each scan. This step was found to greatly improve the stability of the scans and enabled the use of background subtraction. Advantages of the microwire electrodes were a low roughness of the surface, without a need for pretreatment, and a very small diffusion layer (2 microm with stirring). Under the optimized voltammetric conditions, the detection limits were 6 pM mercury and 25 pM copper using 300-s deposition. These values are well below those reported previously for other electrodes including rotating disk electrodes. Measurements of the influence of the major anions I-, Br-, Cl-, SO4(2-), F-, HCO3-, and B(OH)4 on the response for mercury showed that bromide and chloride are predominantly responsible for the underpotential deposition mechanism of mercury in seawater. The method was applied to coastal water samples from Liverpool Bay.  相似文献   

16.
A surface-based method for the study of the interactions of DNA with redox-active 1,10-phenantroline-5,6-dione (phen-dione) osmium complexes is described. The study was carried out using gold electrodes modified with DNA via adsorption and [Os(bpy)(2)(phe-dione)](3+/2+) (bpy = 2,2'-bipyridyl) or [Os(phen)(2)(phen-dione)](3+/2+) (phen = 1,10-phenantroline) as electrochemical reported molecules. The method, which is simple and reagent-saving, allows the accumulation of osmium complexes within the DNA layer. The amount of osmium complex bound by the adsorbed layer of DNA was determined from the voltammetric charge associated with the osmium redox process of the immobilized metal complex. The quinone moiety of the phen-dione ligand was useful as an indicator for electrochemical DNA sensing because of its redox response at low potentials. A thiol-linked single-stranded Helicobacter pylori DNA probe was immobilized, through S-Au bonds on to a gold electrode (density of modification 86 pmol/cm(2)). Following hybridization with the complementary DNA sequence, the osmium complex was electrochemically accumulated within the double-stranded DNA layer. Electrochemical detection was performed by differential pulse voltammetry over the potential range where the quinone moiety was redox active (i.e., at very low potentials, -0.020 V vs SSCE); with this approach, a sequence of the H. pylori could be quantified over the range from 5 to 20 pmol with a linear correlation of r = 0.9888 and a detection limit of approximately 6 pmol.  相似文献   

17.
We report a relatively simple electrostatic method for modifying submicrometer-size latex spheres with gold nanoparticles (AuNPs) based on layer-by-layer modification of the latex by polyelectrolytes. The AuNP coverages for 343- and 501-nm-diameter spheres were 4.0 x 10 (10) +/- 1.3 x 10 (10) and 8.2 x 10 (10) +/- 2.7 x 10 (10) particles cm (-2), respectively, which is an increase of 1 order of magnitude on the previously reported coverage at latex-AuNPs using streptavidin-biotin binding (Kawde, A.N.; Wang, J. Electroanalysis 2004, 16, 101-107). Due to the fact that the AuNPs used here are also of a larger size (mean diameter 15.5 +/- 1.6 nm, cf. 5 nm), this represents an increase of 2 orders of magnitude in the number of Au atoms delivered per sphere. The spheres were attached to DNA probes specific to E. coli and used to detect probe hybridization by dissolution of the AuNPs, followed by measurement of Au (3+) ions by anodic stripping voltammetry (ASV). Use of differential pulse voltammetry for the stripping step, along with optimization of the ASV conditions, enabled a detection limit of 0.5 fM, which is, to the best of our knowledge, equal or lower than previous voltammetric nanoparticle methods for detection of DNA hybridization.  相似文献   

18.
Theory is presented to describe the voltammetric signals associated with the stripping phase of stripping voltammetry at solid electrodes. Three mathematical models are considered, and the importance of the hemispherical diffusion associated with electrochemical dissolution of particles in the micrometer range is investigated. Model A considers a "monolayer" system where the coverage at a specific point cannot exceed a maximum value. Model B considers a thin layer of metal or metal oxide, but in contrast to model A, the maximum surface coverage is not restricted. Model C represents the stripping of a "thick layer" where the deposition is also unrestricted.  相似文献   

19.
Guo J  Yuan Y  Amemiya S 《Analytical chemistry》2005,77(17):5711-5719
Heparin, a highly negatively charged polysaccharide, which has been used widely as an anticoagulant and antithrombotic, was detected by ion-transfer voltammetry at the interface between 1,2-dichloroethane and an aqueous buffer solution or undiluted blood plasma. Quaternary ammoniums with different numbers of methyl and long alkyl groups were examined as positively charged heparin ionophores using pipet electrodes filled with the organic electrolyte solutions of their tetrakis(4-chlorophenyl)borate salts. It was shown that octadecyltrimethylammonium most selectively facilitates interfacial heparin adsorption without interference from potential-dependent ionophore transfer into the aqueous phase. Water-filled pipet electrodes were also used to study the stoichiometry of the interfacial complex between a heparin molecule and multiple ionophore molecules, which is discussed as a counterion condensation effect. Stripping voltammetry based on facilitated heparin adsorption and desorption gives a detection limit of 0.012 unit/mL in 0.12 M NaCl buffered at pH 7.2, which is 1 order of magnitude lower than therapeutic heparin concentrations (>0.2 unit/mL) and is comparable to a detection limit of the most sensitive heparin sensor reported so far. The biomedical utility of ion-transfer voltammetry was demonstrated for the first time in an undiluted blood sample. Despite interferences by Na+, Cl-, and plasma proteins such as serum albumin, a detection limit of 0.13 unit/mL was obtained in sheep blood plasma with the stripping method.  相似文献   

20.
We have successfully developed electrochemical sensors based on functionalized nanostructured materials for voltammetric analysis of toxic metal ions. Glycinylurea self-assembled monolayers on mesoporous silica (Gly-UR SAMMS) were incorporated in carbon paste electrodes for the detection of toxic metal ions such as lead, copper, and mercury based on adsorptive stripping voltammetry (AdSV). The electrochemical sensor yields a linear response at a low ppb level of Pb2+ (i.e., 2.5-50 ppb) after a 2-min preconcentration period, with reproducible measurements (%RSD = 3.5, N = 6) and an excellent detection limit (1 ppb). By exploiting the interfacial functionality of Gly-UR SAMMS, the sensor is selective for the target species, does not require the use of a mercury film, and can be easily regenerated in dilute acid solution. The rigid, open, parallel pore structure, combined with suitable interfacial chemistry of SAMMS, also results in fast analysis times (2-3 min). The nanostructured SAMMS materials enable the development of miniature sensing devices that are compact and low cost, have low energy consumption, and are easily integrated into field-deployable units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号