首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Although LC-MS methods are increasingly used for the absolute quantification of proteins, the lack of appropriate internal standard (IS) hinders the development of rapid and standardized analytical methods for both in vitro and in vivo studies. Here, we have developed a novel method for the absolute quantification of a therapeutic protein, which is monoclonal antibody (mAb). The method combines liquid chromatography tandem mass spectrometry (LC-MS/MS) and protein cleavage isotope dilution mass spectrometry with the isotope-labeled mAb as IS. The latter was identical to the analyzed mAb with the exception that each threonine contains four (13)C atoms and one (15)N atom. Serum samples were spiked with IS prior to the overnight trypsin digestion and subsequent sample cleanup. Sample extracts were analyzed on a C18 ACE column (150 mm x 4.6 mm) using an LC gradient time of 11 min. Endogenous mAb concentrations were determined by calculating the peak height ratio of its signature peptide to the corresponding isotope-labeled peptide. The linear dynamic range was established between 5.00 and 1000 microg/mL mAb with accuracy and precision within +/-15% at all concentrations and below +/-20% at the LLOQ (lower limit of quantification). The overall method recovery in terms of mAb was 14%. The losses due to sample preparation (digestion and purification) were 72% from which about 32% was due to the first step of the method, the sample digestion. This huge loss during sample preparation strongly emphasizes the necessity to employ an IS right from the beginning. Our method was successfully applied to the mAb quantification in marmoset serum study samples, and the precision obtained on duplicate samples was, in most cases, below 20%. The comparison with enzyme-linked immunosorbent assay (ELISA) showed higher exposure in terms of AUC and Cmax with the LC-MS/MS method. Possible reasons for this discrepancy are discussed in this study. The results of this study indicate that our LC-MS/MS method is a simple, rapid, and precise approach for the therapeutic mAb quantification to support preclinical and clinical studies.  相似文献   

2.
Liquid chromatography tandem mass spectrometry (LC-MS/MS) has been shown to be a viable tool for preclinical pharmacokinetic (PK) analysis of monoclonal antibody (mAb) therapeutics. This work describes free and total PK assays for the mAb PF-00547,659 in serum of ulcerative colitis patients in a First-In-Human study [Vermeire, S. et al. Gut2011, 60 (8), 1068-1075]. The assay to measure free PF-00547,659 used immuno-enrichment with a biotinylated anti-idiotypic antibody and streptavidin magnetic beads. The total assay used enrichment by protein G magnetic beads. Following elution of PF-00547,659 from the beads, addition of an extended sequence stable isotope labeled peptide and trypsin digestion, a proteotypic peptide derived from the CDR region of the light chain of PF-00547,659 was quantified by LC-MS/MS. The free assay had a calibration range from 7.03 ng/mL to 450 ng/mL. The assay was precise and accurate with interbatch imprecision <16.5%, and interbatch inaccuracy <13.7% at all concentrations investigated during assay qualification. Results from LC-MS/MS methodologies are compared with historical immunoassay data originally acquired during the course of the clinical study. PK parameter estimates were highly correlated between the two analytical approaches. This work provides precedence that immunoaffinity LC-MS/MS can effectively be used to measure the serum concentrations of mAb therapeutics in clinical studies.  相似文献   

3.
A method is presented to quantify intermediate-abundance proteins in human serum using a single-quadrupole linear ion trap mass spectrometer-in contrast, for example, to a triple-quadrupole mass spectrometer. Stable-isotope-labeled (tryptic) peptides are spiked into digested protein samples as internal standards, aligned with the traditional isotope dilution approach. As a proof-of-concept experiment, four proteins of intermediate abundance were selected, coagulation factor V, adiponectin, C-reactive protein (CRP), and thyroxine binding globulin. Stable-isotope-labeled peptides were synthesized with one tryptic sequence from each of these proteins. The normal human serum concentration ranges of these proteins are from 1 to 30 microg/mL (or 20 to 650 pmol/mL). These labeled peptides and their endogenous counterparts were analyzed by LC-MS/MS using multiple reaction monitoring, a multiplexed form of the selected reaction monitoring technique. For these experiments, only one chromatographic dimension (on-line reversed-phase capillary column) was used. Improved limits of detection will result with multidimensional chromatographic methods utilizing more material per sample. Standard curves of the spiked calibrants were generated with concentrations ranging from 3 to 700 pmol/mL using both neat solutions and peptides spiked into the complex matrix of digested serum protein solution where ion suppression effects and interferences are common. Endogenous protein concentrations were determined by comparing MS/MS peak areas of the endogenous peptides to the isotopically labeled internal calibrants. The derived concentrations from a normal human serum pool (neglecting loss of material during sample processing) were 9.2, 110, 120, and 246 pmol/mL for coagulation factor V, adiponectin, CRP, and thyroxine binding globulin, respectively. These concentrations generally agree with the reported normal ranges for these proteins. As a measure of analytical reproducibility of this single-quadrupole assay, the coefficients of variance based on 12 repeated measurements for each of the endogenous tryptic peptides were 17.0, 25.4, 24.2, and 14.0% for coagulation factor V, adiponectin, CRP, and thyroxine binding globulin, respectively.  相似文献   

4.
Guan F  Uboh CE  Soma LR  Birks E  Chen J  You Y  Rudy J  Li X 《Analytical chemistry》2008,80(10):3811-3817
Recombinant human erythropoietin (rhEPO) and darbepoetin alfa (DPO) are protein-based drugs for the treatment of anemia in humans by stimulating erythrocyte production. However, these agents are abused in human and equine sports due to their potential to enhance performance. This paper describes the first method for differentiation and identification of rhEPO and DPO in equine plasma by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method comprised analyte extraction and enrichment by immunoaffinity separation with anti-rhEPO antibodies, dual digestion by trypsin and peptide-N-glycosidase F (PNGase F), and analysis by LC-MS/MS. Two unique deglycosylated tryptic peptides, (21)EAENITTGCAEHCSLNENITVPDTK (45) (T 5) from rhEPO and (77)GQALLVNSSQVNETLQLHVDK (97) (T 9) from DPO, were employed for differentiation and identification of rhEPO and DPO via LC retention times and major product ions. The limit of identification was 0.1 ng/mL for DPO and 0.2 ng/mL for rhEPO in equine plasma, and the limit of detection was 0.05 ng/mL for DPO and 0.1 ng/mL for rhEPO. Analyte carryover problem encountered was solved by adding 20% acetonitrile to the solvent of the sample digest to increase solubility of the peptides. This method was successfully applied to identification of DPO in plasma samples collected from a research horse following DPO administration and from racehorses out of competition in North America. Thus, it provides a powerful tool in the fight against blood doping with rhEPO and DPO in the horse racing industry.  相似文献   

5.
Proteomics has grown significantly with the aid of new technologies that consistently are becoming more streamlined. While processing of proteins from a whole cell lysate is typically done in a bottom-up fashion utilizing MS/MS of peptides from enzymatically digested proteins, top-down proteomics is becoming a viable alternative that until recently has been limited largely to offline analysis by tandem mass spectrometry. Here we describe a method for high-resolution tandem mass spectrometery of intact proteins on a chromatographic time scale. In a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) run, we have identified 22 yeast proteins with molecular weights from 14 to 35 kDa. Using anion exchange chromatography to fractionate a whole cell lysate before online LC-MS/MS, we have detected 231 metabolically labeled (14N/15N) protein pairs from Saccharomyces cerevisiae. Thirty-nine additional proteins were identified and characterized from LC-MS/MS of selected anion exchange fractions. Automated localization of multiple acetylations on Histone H4 was also accomplished on an LC time scale from a complex protein mixture. To our knowledge, this is the first demonstration of top-down proteomics (i.e., many identifications) on linear ion trap Fourier transform (LTQ FT) systems using high-resolution MS/MS data obtained on a chromatographic time scale.  相似文献   

6.
A novel approach for on-line introduction of internal standard (IS) for quantitative analysis using LC-MS/MS has been developed. In this approach, analyte and IS are introduced into the sample injection loop in different steps. Analyte is introduced into the injection loop using a conventional autosampler (injector) needle pickup from a sample vial. IS is introduced into the sample injection loop on-line from a microreservoir containing the IS solution using the autosampler. As a result, both analyte and IS are contained in the sample loop prior to the injection into the column. Methodology allowed to reliably introduce IS and demonstrated injection accuracy and precision comparable to those obtained using off-line IS introduction (i.e., IS and analyte are premixed before injection) while maintaining chromatographic parameters (i.e., analyte and IS elution time and peak width). This new technique was applied for direct analysis of model compounds in rat plasma using on-line solid-phase extraction (SPE) LC-MS/MS quantification. In combination with on-line SPE, IS serves as a surrogate IS and compensates for signal variations attributed to sample preparation and instrumentation factors including signal suppression. The assays yielded accuracy (85-119%), precision (2-16%), and analyte recovery comparable to those obtained using off-line IS introduction. Furthermore, on-line IS introduction allows for nonvolumetric sample (plasma) collection and direct analysis without the need of measuring and aliquoting a fixed sample volume prior to the on-line SPE LC-MS/MS analysis. Therefore, this methodology enables direct sample (plasma) analysis without any sample manipulation and preparation.  相似文献   

7.
Chen  Yanni  Liu  Liqiang  Xu  Liguang  Song  Shanshan  Kuang  Hua  Cui  Gang  Xu  Chuanlai 《Nano Research》2017,10(8):2833-2844
A gold immunochromatographic sensor (GICS) was developed for the rapid detection of 26 sulfonamides in honey samples.The sensor was based on a group-specific monoclonal antibody (mAb) that can recognize all 26 sulfonamides.Three haptens (hapten 1 with a thiazole ring,hapten 2 with a benzene ring,and hapten 3 with a straight carbon chain) were used for antigen preparation.With hybridoma technology,a group-specific mAb was screened with a 50% maximal inhibitory concentration (IC50) against sulfathizole (STZ) and the other 25 analogues ranging from 0.08 to 90.18 ng/mL.Mono-dispersed gold nanoparticles were conjugated with the mAb to develop the lateral immunochromatographic strip.A labeled antibody concentration of 0.1 μg/mL and a coating antigen concentration of 0.2 μg/mL in the test line were chosen for strip preparation.Under optimized conditions,the visual limits of detection (vLOD) for the concentrations of STZ,sulfamethoxazole,sulfamethizole,sulfadiazine,sulfamerazine,sulfadimethoxine,sulfamonomethoxine,sulfameter,sulfamethoxypyridazine,and sulfachloropyridazine were 5,0.25,0.25,10,5,10,25,2.5,5,0.25,and 10 μg/kg,respectively.Scanner analysis in honey samples revealed good performance for detection of the 26 sulfonamides.Commercial honey samples were tested with the sensor and positive results were confirmed with high-performance liquid chromatography.The proposed strip sensor provides a convenient method for the rapid and reliable determination of sulfonamides pollutants in honey samples.  相似文献   

8.
Guan F  Uboh CE  Soma LR  Birks E  Chen J  Mitchell J  You Y  Rudy J  Xu F  Li X  Mbuy G 《Analytical chemistry》2007,79(12):4627-4635
Recombinant human erythropoietin (rhEPO) and darbepoetin alpha (DPO) are protein-based drugs for the treatment of anemia by stimulating red blood cell production. Consequently, they are abused in human and equine sports. To deter their abuse in the horse racing industry, a sensitive and reliable method for confirmation of these agents in equine plasma has been in urgent need. Such a method by LC-MS/MS is described in this paper. The method involved analyte enrichment by immunoaffinity separation using anti-rhEPO antibody linked to magnetic beads, digestion by trypsin, and analysis by LC-MS/MS. Two specific proteotypic peptides, 46VNFYAWK52 and 144VYSNFLR150 from rhEPO and DPO were employed for confirmation of the analytes based on chromatographic retention times and major product ions. The limit of confirmation of this method was 0.2 ng/mL, and the limit of detection was 0.1 ng/mL for rhEPO and DPO in equine plasma. This method was successful in confirming the presence of rhEPO and DPO in plasma samples collected from research horses to which rhEPO or DPO was administered and from racehorses following competition and in noncompetition samples in North America. To our knowledge, this is the first LC-MS method with adequate sensitivity and specificity in providing unequivocal confirmation of rhEPO and DPO in equine plasma samples. This method provides a powerful enforcement tool that was lacking in the fight against the abuse of rhEPO and DPO in the horse racing industry.  相似文献   

9.
Yan Z  Caldwell GW 《Analytical chemistry》2004,76(23):6835-6847
A highly efficient method has been developed to detect and identify reactive metabolites, using stable-isotope trapping combined with ESI-MS/MS neutral loss scanning. A mixture of glutathione (GSH, gamma-glutamylcysteinylglycine) and the stable-isotope labeled compound (GSX, gamma-glutamylcysteinylglycine-(13)C(2)-(15)N) was used at an equal molar ratio to trap reactive metabolites generated in microsomal incubations. Samples resulting from incubations were cleaned and concentrated by SPE, followed by LC-MS/MS analyses using constant neutral loss scanning for 129 Da (the gamma-glutamyl moiety) to detect formed GSH conjugates. Unambiguous identification of glutathione adducts was greatly facilitated by the presence of a unique MS signature of a prominent isotopic doublet that differs in mass by 3 Da. Further structural characterization of conjugates was achieved with high confidence by subsequently acquiring MS/MS spectra that were featured by neutral losses of 75 and 129 Da for GSH adducts and 78 and 129 Da for isotopic GSX adducts. The reliability of this method was vigorously validated using a number of compounds known to form reactive metabolites. Superior sensitivity was demonstrated by the capability of the current approach to identify reactive metabolites at low abundance. Because of the unique isotopic MS signature, ultrafast analyses of reactive metabolites were accomplished by direct injection of cleaned samples into mass spectrometers for neutral loss scanning. More importantly, this study has demonstrated the feasibility of the current method for completely automated detection of reactive metabolites via computer-assisted pattern recognition.  相似文献   

10.
Liquid chromatography coupled to mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) has become a standard technique for analyzing complex peptide mixtures to determine composition and relative abundance. Several high-throughput proteomics techniques attempt to combine complementary results from multiple LC-MS and LC-MS/MS analyses to provide more comprehensive and accurate results. To effectively collate and use results from these techniques, variations in mass and elution time measurements between related analyses need to be corrected using algorithms designed to align the various types of data: LC-MS/MS versus LC-MS/MS, LC-MS versus LC-MS/MS, and LC-MS versus LC-MS. Described herein are new algorithms referred to collectively as liquid chromatography-based mass spectrometric warping and alignment of retention times of peptides (LCMSWARP), which use a dynamic elution time warping approach similar to traditional algorithms that correct for variations in LC elution times using piecewise linear functions. LCMSWARP is compared to the equivalent approach based upon linear transformation of elution times. LCMSWARP additionally corrects for temporal drift in mass measurement accuracies. We also describe the alignment of LC-MS results and demonstrate their application to the alignment of analyses from different chromatographic systems, showing the suitability of the present approach for more complex transformations.  相似文献   

11.
We have developed a complete system for the isotopic labeling, fractionation, and automated quantification of differentially expressed peptides that significantly facilitates candidate biomarker discovery. We describe a new stable mass tagging reagent pair, (12)C(6)- and (13)C(6)-phenyl isocyanate (PIC), that offers significant advantages over currently available tags. Peptides are labeled predominantly at their amino termini and exhibit elution profiles that are independent of label isotope. Importantly, PIC-labeled peptides have unique neutral-mass losses upon CID fragmentation that enable charge state and label isotope identification and, thereby, decouple the sequence identification from the quantification of candidate biomarkers. To exploit these properties, we have coupled peptide fractionation protocols with a Thermo LTQ-XL LC-MS(2) data acquisition strategy and a suite of automated spectrum analysis software that identifies quantitative differences between labeled samples. This approach, dubbed the PICquant platform, is independent of protein sequence identification and excludes unlabeled peptides that otherwise confound biomarker discovery. Application of the PICquant platform to a set of complex clinical samples showed that the system allows rapid identification of peptides that are differentially expressed between control and patient groups.  相似文献   

12.
The utility of packed-column supercritical, subcritical, and enhanced fluidity liquid chromatographies (pcSFC) for high-throughput applications has increased during the past few years. In contrast to traditional reversed-phase liquid chromatography, the addition of a volatile component to the mobile phase, such as CO2, produces a lower mobile-phase viscosity. This allows the use of higher flow rates which can translate into faster analysis times. In addition, the resulting mobile phase is considerably more volatile than the aqueous-based mobile phases that are typically used with LC-MS, allowing the entire effluent to be directed into the MS interface. High-throughput bioanalytical quantitation using pcSFC-MS/MS for pharmacokinetics applications is demonstrated in this report using dextromethorphan as a model compound. Plasma samples were prepared by automated liquid/liquid extraction in the 96-well format prior to pcSFC-MS/MS analysis. Three days of validation data are provided along with study sample data from a patient dosed with commercially available Vicks 44. Using pcSFC and MS/MS, dextromethorphan was quantified in 96-well plates at a rate of approximately 10 min/plate with average intraday accuracy of 9% or better. Daily relative standard deviations (RSDs) were less than 10% for the 2.21 and 14.8 ng/mL quality control (QC) samples, while the RSDs were less than 15% at the 0.554 ng/mL QC level.  相似文献   

13.
Reversible protein phosphorylation is an essential regulatory component of virtually every cellular process and is frequently dysregulated in cancer. However, significant analytical barriers persist that hamper the routine application of phosphoproteomics in translational settings. Here, we present a straightforward and reproducible approach for the broadscale analysis of protein phosphorylation that relies on a single phosphopeptide enrichment step using titanium dioxide microspheres from whole cell lysate digests and compared it to the well-established SCX-TiO(2) workflow for phosphopeptide purification on a proteome-wide scale. We demonstrate the scaleabilty of our approach from 200 μg to 5 mg of total NCI-H23 non-small cell lung adenocarcinoma cell lysate digest and determine its quantitative reproducibility by label-free analysis of phosphopeptide peak areas from replicate purifications (median CV: 20% RSD). Finally, we combine this approach with immunoaffinity phosphotyrosine enrichment, enabling the identification of 3168 unique nonredundant phosphotyrosine peptides in two LC-MS/MS runs from 8 mg of HeLa peptides, each with 80% phosphotyrosine selectivity, at a peptide FDR of 0.2%. Taken together, we establish and validate a robust approach for proteome-wide phosphorylation analysis in a variety of scenarios that is easy to implement in biomedical research and translational settings.  相似文献   

14.
Characterization of glycopeptides has become an important tool toward a better understanding of the molecular details in carbohydrate-protein interactions. In this approach, oligosaccharides are commonly not detectable under mass spectrometric conditions because of ionization suppression by deglycosylated peptides. Their composition is only deduced from the mass differences between glycopeptides and corresponding deglycosylated peptides. Here, we describe how carbohydrates can be easily detected in the PNGase-treated samples and structurally investigated next to the peptides. The efficacy of this method is demonstrated through the analysis of tryptic glycopeptides obtained from human IgG. Following deglycosylation with PNGaseF and derivatization with phenylhydrazine, MALDI spectra produced ion peaks of labeled oligosaccharides and deglycosylated peptides. The relative abundances of individual oligosaccharides were consistent with those of the glycopeptides. MALDI-MS/MS provided useful data for the structural elucidation of oligosaccharides, including the assignment of dominant isomers and glycosylation sites in peptides. MALDI-MS/MS fragmentation patterns of deglycosylated peptide ions indicated glycosylation sites at asparagine 297 and 299. The observed peptide of the composition ADQTVYR, described for the first time in this study, indicated new glycosylation sites in IgG1 human myeloma plasma.  相似文献   

15.
High throughput-solid phase extraction tandem mass spectrometry (HT-SPE/MS) is a fully automated system that integrates sample preparation using ultrafast online solid phase extraction (SPE) with mass spectrometry detection. HT-SPE/MS is capable of conducting analysis at a speed of 5-10 s per sample, which is several fold faster than chromatographically based liquid chromatography-mass spectrometry (LC-MS). Its existing applications mostly involve in vitro studies such as high-throughput therapeutic target screening, CYP450 inhibition, and transporter evaluations. In the current work, the feasibility of utilizing HT-SPE/MS for analysis of in vivo preclinical and clinical samples was evaluated for the first time. Critical bioanalytical parameters, such as ionization suppression and carry-over, were systematically investigated for structurally diverse compounds using generic SPE operating conditions. Quantitation data obtained from HT-SPE/MS was compared with those from LC-MS analysis to evaluate its performance. Ionization suppression was prevalent for the test compounds, but it could be effectively managed by using a stable isotope labeled internal standard (IS). A structural analogue IS also generated data comparable to the LC-MS system for a test compound, indicating matrix effects were also compensated for to some extent. Carry-over was found to be minimal for some compounds and variable for others and could generally be overcome by inserting matrix blanks without sacrificing assay efficiency due to the ultrafast analysis speed. Quantitation data for test compounds obtained from HT-SPE/MS were found to correlate well with those from conventional LC-MS. Comparable accuracy, precision, linearity, and sensitivity were achieved with analysis speeds 20-30-fold higher. The presence of a stable metabolite in the samples showed no impact on parent quantitation for a test compound. In comparison, labile metabolites could potentially cause overestimation of the parent concentration if the ion source conditions are not optimized to minimize in-source breakdown. However, with the use of conditions that minimized in-source conversion, accurate measurement of the parent was achieved. Overall, HT-SPE/MS exhibited significant potential for high-throughput in vivo bioanalysis.  相似文献   

16.
Although liquid chromatography/mass spectrometry using selected reaction monitoring (LC/SRM-MS) holds great promise for targeted protein analysis, quantification of therapeutic monoclonal antibody (mAb) in tissues represents a daunting challenge due to the extremely low tissue levels, complexity of tissue matrixes, and the absence of an efficient strategy to develop an optimal LC/SRM-MS method. Here we describe a high-throughput, streamlined strategy for the development of sensitive, selective, and reliable quantitative methods of mAb in tissue matrixes. A sensitive nano-LC/nanospray-MS method was employed to achieve a low lower limit of quantification (LOQ). For selection of signature peptides (SP), the SP candidates were identified by a high-resolution Orbitrap and then optimal SRM conditions for each candidate were obtained using a high-throughput, on-the-fly orthogonal array optimization (OAO) strategy, which is capable of optimizing a large set of SP candidates within a single nano-LC/SRM-MS run. Using the optimized conditions, the candidates were experimentally evaluated for both sensitivity and stability in the target matrixes, and SP selection was based on the results of the evaluation. Two unique SP, respectively from the light and heavy chain, were chosen for quantification of each mAb. The use of two SP improves the quantitative reliability by gauging possible degradation/modification of the mAb. Standard mAb proteins with verified purities were utilized for calibration curves, to prevent the quantitative biases that may otherwise occur when synthesized peptides were used as calibrators. We showed a proof of concept by rapidly developing sensitive nano-LC/SRM-MS methods for quantifying two mAb (8c2 and cT84.66) in multiple preclinical tissues. High sensitivity was achieved for both mAb with LOQ ranged from 0.156 to 0.312 μg/g across different tissues, and the overall procedure showed a wide dynamic range (≥500-fold) and good accuracy [relative error (RE) < 18.8%] and precision [interbatch relative standard deviation (RSD) < 18.1%, intrabatch RSD < 17.2%]. The quantitative method was applied to a comprehensive investigation of the steady-state tissue distribution of 8c2 in wild-type mice versus those deficient in FcRn α-chain, FcγIIb, and FcγRI/FcγRIII, following a chronic dosing regimen. This work represents the first extensive quantification of mAb in tissues by an LC/MS-based method.  相似文献   

17.
应用细胞工程技术研制大菱鲆免疫球蛋白M(immunoglobulin M,IgM)的单克隆抗体并分析其免疫学特性。小鼠骨髓瘤细胞NS0与经IgM免疫的BALB/C小鼠脾细胞融合,经过反复有限稀释法克隆,筛选获得4株抗大菱鲆IgM的单克隆抗体杂交瘤细胞株,分别为B1D1、D5C2、E1B2和F4A1。经小鼠腹水扩大生产后,单抗效价为1∶1.024×106检测灵敏度为32 ng/mL。Western blot分析表明,获得的单抗与IgM重链区特异性结合。交叉结果显示,单抗与大菱鲆血清呈强阳性反应,与褐牙鲆、红鳍东方鲀、许氏平鲉、六线鱼、鲈鱼均呈微弱阳性反应,而与半滑舌鳎、鲤鱼、鲫鱼、草鱼、鳙鱼的血清无交叉反应。本研究制备的大菱鲆IgM单克隆抗体效价高、灵敏度高、特异性强,适合用于大菱鲆免疫学相关研究和生产实际应用。  相似文献   

18.
A new liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach, based on the precursor ion scanning technique using a triple-stage quadrupole, has been developed to detect free and protein-bound histidine (His) residues modified by reactive carbonyl species (RCS) generated by lipid peroxidation. This approach has been applied to urines from Zucker obese rats, a nondiabetic animal model characterized by obesity and hyperlipidemia, where RCS formation plays a key role in the development of renal and cardiac dysfunction. The immonium ion of His at m/z 110 was used as a specific product ion of His-containing peptides to generate precursor ion spectra, followed by MS2 acquisitions of each precursor ion of interest for structural characterization. By this approach, three novel adducts, which are excreted in free form only, have been identified, two of them originating from the conjugation of 4-hydroxy-trans-2-nonenal (HNE) to His, followed by reduction/oxidation of the aldehyde: His-1,4-dihydroxynonane (His-DHN), His-4-hydroxynonanoic acid (His-HNA), and carnosine-HNE, this last recognized in previous in vitro studies as a new potential biomarker of carbonyl stress. No free His-HNE was found in urines, which was detected only in protein hydrolysates. The same LC-MS/MS method, working in multiple reaction monitoring (MRM) mode, has been developed, validated, and applied to quantitatively profile in Zucker urines both conventional (1,4-dihydroxynonane mercapturic acid, DHN-MA) and the newly identified adducts, except His-HNA. The analytes were separated on a C12 reversed-phase column by gradient elution from 100% A (water containing 5 mM nonafluoropentanoic acid) to 80% B (acetonitrile) in 24 min at a flow rate of 0.2 mL/min and analyzed for quantification in MRM mode by applying the following precursor-to-product ion transitions m/z 322.2 --> 164.1 + 130.1 (DHN-MA), m/z 314.7 --> 268.2 + 110.1 (His-DHN), m/z 312.2 --> 110.1 + 156.0 (His-HNE), m/z 383.1 --> 266.2 + 110.1 (CAR-HNE), m/z 319.2 --> 301.6 + 156.5 (H-Tyr-His-OH, internal standard). Precision and accuracy data, as well as the lower limits of quantification in urine, were highly satisfactory (from 0.01 nmol/mL for CAR-HNE, His-DHN, His-HNE, to 0.075 nmol/mL for DHN-MA). The method, applied to evaluate for the first time the advanced lipoxidation end products profile in urine from obese Zucker rats, an animal model for the metabolic syndrome, has proved to be suitable and sensitive enough for testing in vivo the carbonyl quenching ability of newly developed RCS sequestering agents.  相似文献   

19.
The development of methods to chemically modify and isolate cysteinyl-residue-containing peptides (Cys-peptides) for LC-MS/MS analysis has generated considerable interest in the field of proteomics. Methods using isotope-coded affinity tags (ICAT) and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine (iodoacetyl-PEO-biotin) employ similar Cys-modifying reagents that contain a thiolate-specific biotin group to modify and isolate Cys-containing peptides in conjunction with immobilized avidin. For these strategies to be effective on a proteome-wide level, the presence of the ICAT or acetyl-PEO-biotin tag should not interfere with the efficiency of induced dissociation in MS/MS experiments or with the identification of the modified Cys-peptides by automated database searching algorithms. We have compared the collision-induced dissociation (CID) fragmentation patterns of peptides labeled with iodoacetyl-PEO-biotin and the ICAT reagent to those of the unmodified peptides. CID of Cys-peptides modified with either reagent resulted in the formation of ions attributed to the modified Cys-peptides as well as those unique to the labeling reagent. As demonstrated by analyzing acetyl-PEO-biotin labeled peptides from ribonuclease A and the ICAT-labeled proteome of Deinococcus radiodurans, the presence of these label-specific product ions provides a useful identifier to discern whether a peptide has been modified with the Cys-specific reagent, especially when a number of peptides analyzed using these methods do not contain a modified Cys residue, and to differentiate identical Cys-peptides labeled with either ICAT-d0 or ICAT-d8.  相似文献   

20.
A novel approach to parallel liquid chromatography/ tandem mass spectrometry (LC/MS/MS) analyses for pharmacokinetic assays and for similar quantitative applications is presented. Modest modifications render a conventional LC/MS system capable of analyzing samples in parallel. These modifications involve the simple incorporation of three valves and four LC columns into a conventional system composed of one binary LC pumping system, one autosampler, and one mass spectrometer. An increase in sample throughput is achieved by staggering injections onto the four columns, allowing the mass spectrometer to continuously analyze the chromatographic window of interest Using this approach, the optimized run time is slightly greater than the sum of the widths of the desired peaks. This parallel chromatography unit can operate under both gradient and isocratic LC conditions. To demonstrate the utility of the system, atorvastatin, five of its metabolites, and their deuterated internal standards (IS) were analyzed using gradient elution chromatography conditions. The results from a prestudy assay evaluation (PSAE) tray of standards and quality control (QC) samples from extracted spiked human plasma are presented. The relative standard deviation and the accuracy of the QC samples did not exceed 8.1% and 9.6%, respectively, which is well within the acceptance criteria of the pharmaceutical industry. For this particular analysis, the parallel chromatography system decreased the overall run time from 4.5 to 1.65 min and, therefore, increased the overall throughput by a factor of 2.7 in comparison to a conventional LC/MS/MS analytical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号