首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 4Mo, 6W, 2Mo3W, 2Mo2Cr, and 3W2Cr alloy steels, which cointain alloying elements, such as Mo, W and Cr, contributing to the secondary hardening by forming M2C type carbide, the secondary hardening and fracture behavior were studied. Molybdenum had a strong effect on secondary hardening, while W had a very weak effect on it but delayed the overaging. The MoW steel exhibited both moderately strong hardening and considerable resistance to overaging. On the other hand, the secondary hardening effect was diminished by the Cr addition, because the cementite of M3C type was stabilized at higher temperatures and the formation of M2C carbides was thus inhibited. Although the Cr addition had no merit in the secondary hardening itself, it eliminated the secondary hardening embrittlement (SHE). This was observed as a severe intergranular embrittlement due to the impurity segregation for the Mo and MoW steels and as a decrease in upper shelf energy for W steel, even in the overaged condition.  相似文献   

2.
In 4Mo, 6W, 2Mo3W, 2Mo2Cr, and 3W2Cr alloy steels, which contain alloying elements, such as Mo, W and Cr, contributing to the secondary hardening by forming M2C-type carbide, the secondary hardening and fracture behavior were studied. Molybdenum had a strong effect on secondary hardening, while W had a very weak effect on it but delayed the overaging. The MoW steel exhibited both moderately strong hardening and considerable resistance to overaging. On the other hand, the secondary hardening effect was diminished by the Cr addition, because the cementite of M3C type was stabilized at higher temperatures and the formation of M2C carbides was thus inhibited. Although the Cr addition had no merit in the secondary hardening itself, it eliminated the secondary hardening embrittlement (SHE). This was observed as a severe intergranular embrittlement due to the impurity segregation for the Mo and MoW steels and as a decrease in upper shelf energy for W steel, even in the overaged condition.  相似文献   

3.
The effects of silicon additions up to 3.5 wt pct on the as-cast carbides, as-quenched carbides, and as-tempered carbides of high-speed steels W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V were investigated. In order to further understand these effects, a Fe-16Mo-0.9C alloy was also studied. The results show that a critical content of silicon exists for the effects of silicon on the types and amount of eutectic carbides in the high-speed steels, which is about 3, 2, and 1 wt pct for W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V, respectively. When the silicon content exceeds the critical value, the M2C eutectic carbide almost disappears in the tested high-speed steels. Silicon additions were found to raise the precipitate temperature of primary MC carbide in the melt of high-speed steels that contained d-ferrite, and hence increased the size of primary MC carbide. The precipitate temperature of primary MC carbide in the high-speed steels without d-ferrite, however, was almost not affected by the addition of silicon. It is found that silicon additions increase the amount of undis-solved M6C carbide very obviously. The higher the tungsten content in the high-speed steels, the more apparent is the effect of silicon additions on the undissolved M6C carbides. The amount of MC and M2C temper precipitates is decreased in the W6Mo5Cr4V and W9Mo3Cr4V steels by the addition of silicon, but in the W3Mo2Cr4V steel, it rises to about 2.3 wt pct.  相似文献   

4.
The effect of alloying additions on secondary hardening behavior in Fe-Mo-C steels has been investigated by means of the successive alloying additions of Cr, Co, and Ni. The Cr additions promote M3C cementite formation. The Ni additions destabilize the cementite formation, while the Co additions retard dislocation recovery and present the necessary sites for M2C formation which provides the secondary hardening. Professor Kwon is jointly appointed at the Center for Advanced Aerospace Materials.  相似文献   

5.
The fractures of three model alloys, imitating by their chemical composition the matrixes of the quenched high-speed steels of various Mo: W relations were analyzed. According to the measurements of the stress intensity factor KIc and the differences in the precipitation processes of carbides it was found out that the higher fracture toughness of the matrix of the molybdenum high-speed steels than on the tungsten ones is the results of the differences in the kinetics of precipitation from the martensite matrix of these steels during tempering. After tempering at 250 and 650°C the percentage of the intergranular fracture increases with the increase of the relation of Mo to W in the model alloys of the high-speed steel matrix. This is probably the result of higher precipitation rate of the M3C carbide (at 250°C) and the MC and M6C carbides (at 650°C) in the privileged regions along the grain boundaries. The change of the character of the model alloy fractures after tempering at 450°C from the completely transgranular one in the tungsten alloy to the nearly completely intergranular one in the molybdenum alloy indicates that the coherent precipitation processes responsible for the secondary hardness effect in the tungsten matrix begin at a lower temperature than in the molybdenum matrix. After tempering for the maximum secondary hardness the matrix fractures of the high-speed steels reveal a transgranular character regardless the relation of Mo to W. The higher fracture toughness of the Mo matrix can be the result of the start of the coherent precipitation processes at a higher temperature and their intensity which can, respectively, influence the size of these precipitations, their shape and the degree of dispersion. The transgranular character of the fractures of the S 6-5-2 type high-speed steel in the whole range tempering temperatures results from the presence of the undissolved carbides which while cracking in the region of stress concentration can constitute flaws of critical size which form the path of easy cracking through the grains. The transgranular cracking of the matrix of the real high-speed steels does not change the adventageous influence of molybdenum upon their fracture toughness. On the other hand, the carbides, undissolved during austenitizing, whose size distribution in the molybdenum steels from the point of view of cracking mechanics seems to be unsatisfactory, influence significantly the fracture toughness of these steels.  相似文献   

6.
HSLA-115 is a newly developed Cu-bearing high-strength low-carbon martensitic steel for use in Naval structural applications. This research provides, for the first time, a comprehensive compositional analysis of carbon redistribution and associated complex phase transformations in an isothermal aging study of HSLA-115 at 823 K (550 °C). Specifically, we characterize carbon segregation at lath boundaries, grain-refining niobium carbonitrides, cementite, and secondary hardening M2C carbides, in addition to copper precipitation, by 3D atom probe tomography (APT). Segregation of carbon (3 to 6 at. pct C) is observed at martensitic lath boundaries in the as-quenched and 0.12-hour aged microstructures. On further aging, carbon redistributes itself forming cementite and M2C carbides. Niobium carbonitride precipitates do not dissolve during the austenitizing treatment and are inherited in the as-quenched and aged microstructures; these are characterized along with cementite by synchrotron X-ray diffraction and APT. Sub-nanometer-sized M2C carbide precipitates are observed after the formation of Cu precipitates, co-located with the latter, indicating heterogeneous nucleation of M2C. The temporal evolution of the composition and morphology of M2C carbides at 823 K (550 °C) is described using APT; their precipitation kinetics is intertwined with Cu precipitates, affecting the bulk mechanical properties of HSLA-115. Phase compositions determined by APT are compared with computed compositions at thermodynamic equilibrium using ThermoCalc.  相似文献   

7.
The development of very high-strength levels in many alloy steels is achieved by a secondary hardening reaction. In high Co-Ni steels containing the strong carbide-forming elements Mo, Cr, and W, secondary hardening is accomplished by the precipitation of fine-scale M2C alloy carbides. Coarsening resistance of the M2C precipitates depends on the alloy content of these elements, and there should be an addition to the alloy of these carbide-forming elements which optimizes the M2C coarsening resistance. Current Lifshitz-Slyozov-Wagner (LSW) theory[2,3] cannot properly be used to describe, the coarsening behavior of multicomponent carbides, which involves concentrations and diffusivities of two or more solutes and nonspherical carbide morphologies. A model is introduced for the coarsening resistance of multicomponent carbides. This model treats the coarsening of shape-preserving particle and is applicable to rodlike particles.  相似文献   

8.
In high Co-Ni steels containing the strong carbide-forming elements Mo, Cr, and W, secondary hardening is accomplished by the precipitation of fine-scale M2C alloy carbides. Thermodynamic stability and coarsening resistance of these carbides depend on the alloy content of these elements. A model for the M2C coarsening kinetics in multicomponent alloys has been used to identify the optimum alloying addition for maximum coarsening resistance and as a basis for selection of four experimental alloy steels. Necessary information pertaining to the equilibrium in these steels was obtained using the Thermo-Calc software and database developed at the Royal Institute of Technology, Stockholm, Sweden.  相似文献   

9.
The microstructures and mechanical properties of a series of vacuum melted Fe/(2 to 4) Mo/(0.2 to 0.4) C steels with and without cobalt have been investigated in the as-quenched fully martensitic condition and after quenching and tempering for 1 h at 673 K (400°C) and 873 K (600°C); austenitizing was done at 1473 K (1200°C) in argon. Very good strength and toughness properties were obtained with the Fe/2 Mo/0.4 C alloy in the as-quenched martensitic condition and this is attributed mainly to the absence of internal twinning. The slightly inferior toughness properties compared to Fe/Cr/C steels is attributed to the absence of interlath retained austenite. The two 0.4 pct carbon steels having low Mo contents had approximately one-half the amount of transformation twinning associated with the two 0.4 pct carbon steels having high Mo contents. The plane strain fracture toughness of the steels with less twinning was markedly superior to the toughness of those steels with similar alloy chemistry which had more heavily twinned microstructures. Experiments showed that additions of Co to a given Fe/Mo/C steel raised Ms but did not decrease twinning nor improve toughness. Molybdenum carbide particles were found in all specimens tempered at 673 K (400°C). The Fe/Mo/C system exhibits secondary hardening after tempering at 873 K (600°C). The precipitate is probably Mo2C. This secondary hardening is associated with a reduction in toughness. Additions of Co to Fe/Mo/C steels inhibited or eliminated the secondary hardening effect normally observed. Toughness, however, did not improve and in fact decreased with Co additions.  相似文献   

10.
The microstructures and mechanical properties of a series of vacuum melted Fe/(2 to 4) Mo/(0.2 to 0.4) C steels with and without cobalt have been investigated in the as-quenched fully martensitic condition and after quenching and tempering for 1 h at 673 K (400°C) and 873 K (600°C); austenitizing was done at 1473 K (1200°C) in argon. Very good strength and toughness properties were obtained with the Fe/2 Mo/0.4 C alloy in the as-quenched martensitic condition and this is attributed mainly to the absence of internal twinning. The slightly inferior toughness properties compared to Fe/Cr/C steels is attributed to the absence of interlath retained austenite. The two 0.4 pct carbon steels having low Mo contents had approximately one-half the amount of transformation twinning associated with the two 0.4 pct carbon steels having high Mo contents. The plane strain fracture toughness of the steels with less twinning was markedly superior to the toughness of those steels with similar alloy chemistry which had more heavily twinned microstructures. Experiments showed that additions of Co to a given Fe/Mo/C steel raisedM S but did not decrease twinning nor improve toughness. Molybdenum carbide particles were found in all specimens tempered at 673 K (400°C). The Fe/Mo/C system exhibits secondary hardening after tempering at 873 K (600°C). The precipitate is probably Mo2C. This secondary hardening is associated with a reduction in toughness. Additions of Co to Fe/Mo/C steels inhibited or eliminated the secondary hardening effect normally observed. Toughness, however, did not improve and in fact decreased with Co additions.  相似文献   

11.
The formation of secondary carbides during tempering of H11 hot work steels at 898 K (625 °C) was studied by transmission electron microscopy (TEM) and related to the previously established effects of Si content on mechanical properties. Lower Si contents (0.05 and 0.3 pct Si) and higher Si contents (1.0 and 2.0 pct Si) were observed to yield different carbide phases and different particle distributions. Cementite particles stabilized by Cr, Mo, and V in the lower Si steels were found to be responsible for similar precipitation hardening effects in comparison to the M2C alloy carbides in the higher Si steels. The much higher toughness of the lower Si steels was suggested to be due to a finer and more homogeneous distribution of Cr-rich M7C3 carbides in the interlath and interpackage regions of the quenched and tempered martensite microstructure. The present effects of Si content on the formation of alloy carbides in H11 hot work steels were found to be the result of the retarding effect of Si on the initial formation of cementite, well known from the early tempering stages in low alloy steels.  相似文献   

12.
The spatial distribution and structure of as-cast carbides and the effects of W, Mo, and V content on the morphology and amount of as-cast carbides in high-speed steels were studied systematically. It was shown that increasing the Mo and decreasing the W content led to a decrease in the amount of total eutectic carbide and an increase in the MC and M2C carbides. The eutectic morphology changed from skeletal to platelike when the content of Mo increased. The presence of V favored not only the formation of MC carbide but also the formation of M2C carbide and reduced the formation of M2C carbide. Increasing V led to an increase in the size of the eutectic carbides.  相似文献   

13.
To support quantitative design of ultra-high-strength (UHS) secondary-hardening steels, the precipitation of cementite prior to the precipitation of the M2C phase is investigated using a model alloy. The microstructure of cementite is investigated by transmission electron microscopy (TEM) techniques. Consistent with earlier studies on tempering of Fe-C martensite, lattice imaging of cementite suggests microsyntactic intergrowth of M5C2 (Hägg carbide). The concentration of substitutional alloying elements in cementite are quantified by high-resolution analytical electron microscopy (AEM) using extraction replica specimens. Quantification of the substitutional elements in cementite confirms its paraequilibrium (PE) state with ferrite at the very early stage of tempering. The implications of these results are discussed in terms of the thermodynamic driving force for nucleation of the primary-strengthening, coherent M2C carbide phase. The ferrite-cementite PE condition reduces the carbon concentration in the ferrite matrix with a significant reduction of M2C driving force. The kinetics of dissolution of PE cementite and its transition to other intermediate states will also influence the kinetics of secondary hardening behavior in UHS steels.  相似文献   

14.
The effect of W on dislocation recovery and precipitation behavior was investigated for martensitic 9Cr-(0,l,2,4)W-0.1C (wt pct) steels after quenching, tempering, and subsequent prolonged aging. The steels were low induced-radioactivation martensitic steels for fusion reactor structures, intended as a possible replacement for conventional (7 to 12)Cr-Mo steels. During tempering after quenching, homogeneous precipitation of fine W2C occurred in martensite, causing secondary hardening between 673 and 823 K. The softening above the secondary hardening temperature shifted to higher temperatures with increasing W concentration, which was correlated with the decrease in self-diffusion rates with increasing W concentration. Carbides M23C6 and M7C3 were precipitated in the 9Cr steel without W after high-temperature tempering at 1023 K. With increasing W concentration, M7C3 was replaced by M23C6, and M6C formed in addition to M23C6. During subsequent aging at temperatures between 823 and 973 K after tempering, the recovery of dislocations, the agglomeration of carbides, and the growth of martensite lath subgrains occurred. Intermetallic Fe2W Laves also precipitated in the δ-ferrite grains of the 9Cr-4W steel. The effect of W on dislocation recovery and precipitation behavior is discussed in detail.  相似文献   

15.
The role of alloy composition in determining the microstructure and microchemistry of a series of related high speed steels has been investigated by a combination of analytical electron microscopy and atom-probe field ion microscopy. The four steels which were investigated (M2, ASP 23, ASP 30 and ASP 60) cover a large range of C, V and Co contents. Excepting the Co content, the composition of primary MC and M6C carbides and as-hardened martensite was similar in all four alloys and the major effect of increasing the content of C and V was to increase the volume fraction of MC primary carbides. Precipitation of proeutectoid carbides (mainly MC and M2C) occurred during hardening of all four steels and the extent of this was greatest in the highly alloyed ASP 60. Tempering at 560°C resulted in the precipitation of extremely fine dispersions of MC and M2C secondary carbides with very mixed compositions in all four steels. It was found that, as well as hindering the formation of autotempered M3C in the as-hardened martensite, additions of Co refined the secondary carbide dispersion and delayed overaging reactions. Overaging at 600°C resulted in the precipitation of M3C, M6C and M23C6 at the expense of the fine MC and M2C secondary carbide dispersion.  相似文献   

16.
Ultrahigh hardness levels greater than 700 VHN can be obtained in secondary hardening carburizing steels but depend on costly Co alloying additions to maximize hardness achieved through M2C-type carbide precipitation strengthening. This study aims to incorporate nanometer-scale bcc Cu precipitates to both provide strength as well as catalyze M2C nucleation in the absence of or with reduced Co. Cu additions of 1.0 and 3.7?wt pct were investigated, using a series of mechanistic models coupled with thermodynamic computational tools to derive final compositions. Thirty-pound experimental heats were cast of each designed alloy, samples of which were carburized and tempered to determine their hardness response. Characterization revealed the successful incorporation of Cu alloying additions into this family of steels, demonstrating a secondary hardening response even in the absence of Co. Matrix strength levels were close to those predicted by design models; however, all four alloys demonstrated a hardness deficit of approximately 200 VHN at the carburized surface, suggesting recalibration of the M2C precipitation strengthening model may be required in these alloys.  相似文献   

17.
The effects of systematic variations in Mo content, W content, and the Mo:W ratio upon the freezing process and as-cast carbide morphology of high speed steels were studied for four series of alloys encompassing the nominal composition ranges of AISI type M2 (6 W-5 Mo-4Cr-2V-0.85C) and MIO (0W-8Mo-4Cr-2 V-0.85C) high speed steels. Thermal analysis, metallographic examination, and quantitative metallography were used to characterize these effects. The Hquidus, peritectic, and eutectic reactions were similarly influenced by molybdenum and tungsten, the peritectic temperature being strongly depressed by additions of either element. The types of carbides found in the as-cast structures did not vary, but the amount of feathery eutectic carbide (a layered structure of MC and M6C) was directly relatedto the total Mo plus W content. The amount of isolated vanadium-rich MC type carbide was seen to increase as the amount of feathery eutectic decreased, and also varied with the Mo:W ratio.  相似文献   

18.
Chromium is present in the 52100 bearing steel composition in the range 1.30 to 1.60 wt pct. Chromium has a significant influence on the spheroidization of cementite, finer carbides being formed due to chromium additions. The ferrite to austenite transformation temperatures are increased due to chromium. The microchemistry of the cementite in 52100 changes during heat treatment; the chromium content of secondary carbides is generally lower than that in the spheroidal (FeCr)3C produced by soft annealing. The rate of carbide dissolution is controlled by the rate of chromium diffusion from the carbide-matrix interface. Also, the chromium content of the residual, spheroidal (FeCr)3C increases during austenitization. The effect of substitution of chromium in bearing steel compositions is discussed. In view of the beneficial effect of chromium, only substitution by similar strong carbide forming elements should be considered for bearing steels.  相似文献   

19.
This study is concerned with the effects of alloying elements on fracture toughness in the transition temperature region of base metals and heat-affected zones (HAZs) of Mn-Mo-Ni low-alloy steels. Three kinds of steels whose compositions were varied from the composition specification of SA 508 steel (grade 3) were fabricated by vacuum-induction melting and heat treatment, and their fracture toughness was examined using an ASTM E1921 standard test method. In the steels that have decreased C and increased Mo and Ni content, the number of fine M2C carbides was greatly increased and the number of coarse M3C carbides was decreased, thereby leading to the simultaneous improvement of tensile properties and fracture toughness. Brittle martensite-austenite (M-A) constituents were also formed in these steels during cooling, but did not deteriorate fracture toughness because they were decomposed to ferrite and fine carbides after tempering. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment. These findings indicated that the reduction in C content to inhibit the formation of coarse cementite and to improve toughness and the increase in Mo and Ni to prevent the reduction in hardenability and to precipitate fine M2C carbides were useful ways to improve simultaneously the tensile and fracture properties of the HAZs as well as the base metals.  相似文献   

20.
In an effort to reduce material cost, experimental steel alloys were developed that incorporated Cu precipitation in lieu of costly Co alloying additions in secondary hardening carburizing gear steels. This work utilizes three-dimensional atom probe tomography to study one of these prototype alloys and quantify the nanoscale dispersions of body-centered cubic (bcc) Cu and M2C alloy carbides used to strengthen these steels. The temporal evolution of precipitate, size, morphology, and interprecipitate interactions were studied for various tempering times. Findings suggest that Cu precipitation does act as a catalyst for heterogeneous nucleation of M2C carbides at relatively high hardness levels; however, the resultant volume fraction of strengthening carbides was noticeably less than that predicted by thermodynamic equilibrium calculations, indicating a reduced potency compared with Co-assisted precipitation. Microstructural information such as precipitate size and volume fraction was measured at the peak hardness condition and successfully used to recalibrate alloy design models for subsequent alloy design iterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号